Նյոթերի թեորեմ
Նյոթերի թեորեմը պնդում է, որ ֆիզիկական համակարգի յուրաքանչյուր անընդհատ սիմետրիայի համապատասխանում է որոշակի պահպանման օրենք.
- Ժամանակի համասեռությանը համապատասխանում է էներգիայի պահպանման օրենքը։
- Տարածության համասեռությանը համապատասխանում է իմպուլսի պահպանման օրենքը։
- Տարածության իզոտրոպությանը համապատասխանում է իմպուլսի մոմենտի պահպանման օրենքը։
- Տրամաչափային սիմետրիային համապատասխանում է էլեկտրական լիցքի պահպանման օրենքը և այլն։
Թեորեմը սովորաբար ձևակերպվում է գործողության ֆունկցիոնալ ունեցող մեծությունների համար, և արտահայտում է լագրանժյանի ինվարիանտությունը ձևափոխությունների որոշ անընդհատ խմբի նկատմամբ։
Թեորեմը սահմանել են գյոթինգենյան դպրոցի գիտնականներ Դավիդ Հիլբերտը, Ֆելիքս Կլայնը և Էմմի Նյոթերը։ Ապացուցել է Էմմի Նյոթերը 1915 թվականին, հրատարակել՝ 1918 թվականին[1]։
Ձևակերպում
խմբագրելԴասական մեխանիկա
խմբագրելդիֆեոմորֆիզմների յուրաքանչյուր միապարամետրական խմբի, որի լագրանժյանը պահպանվում է, համապատասխանում է համակարգի առաջին ինտեգրալ, որը հավասար է
- ։
Ձևակերպենք անվերջ փոքրերի ձևափոխությունների տերմիններով։ Դիցուք կոորդինատների անվերջ փոքր ձևափոխությունը
տեսքն ունի, իսկ Լագրանժնի ֆունկցիան ինվարիանտ է այդ ձևափոխությունների նկատմամբ, այսինքն
- , եթե ։
Այդ դեպքում համակարգի համար գոյություն ունի առաջին ինտեգրալ, որը հավասար է
- ։
Թեորեմը կարելի է ընդհանրացնել ժամանակն ընդգրկող ձևափոխությունների համար, եթե ժամանակի շարժումը պատկերացնենք որոշ պարամետրից կախված, ընդ որում շարժման պրոցեսում ։ Այդ դեպքում
ձևափոխություններից հետևում է առաջին ինտեգրալը՝
- ։
Դաշտի տեսություն
խմբագրելՆյոթերի թեորեմը կարելի է ընդհանրացնել անվերջ մեծ թվով ազատության աստիճաններով համակարգի համար։ Այդպիսի համակարգեր են գրավիտացիոն և էլեկտրամագնիսական դաշտերը։ Դիցուք համակարգի Լագրանժի ֆունկցիան կախված է պոտենցիալներից, որոնք իրենց հերթին կախված են կոորդինատներից։ Գործողության ֆունկցիոնալը կունենա
տեսքը։ Դիցուք պոտենցիալների տարածության դիֆեոմորֆիզմների խումբը պահպանում է Լագրանժի ֆունկցիան։ Այդ դեպքում պահպանվում է
վեկտորը, որը կոչվում է Նյոթերի հոսքի վեկտոր։ Գումարում է կատարվում ըստ կրկնվող ինդեքսների. ։ Նյոթերի հոսքի վեկտորի պահպանման իմաստն այն է, որ
այդ պատճառով հոսքը կոորդինատների տարածության ցանկացած փակ մակերևույթով 0 է։ Մասնավորապես, եթե կոորդինատներից առանձնացնենք մեկը՝ ժամանակ կոչվածը, և դիտարկենք հաստատուն ժամանակի հիպերհարթությունը, ապա հոսքը այդպիսի հիպերհարթությունով հաստատուն է ժամանակի ընթացքում, պայմանով, որ դաշտը անվերջությունում բավարար արագ է նվազում, իսկ հիպերմակերևույթը կոմպակտ չէ, այնպես որ վեկտորի հոսքը երկու հիպերմակերևույթների միջակա տարածության տիրույթի կողային սահմանով հավասար է 0։ Դաշտի դասական տեսության մեջ այդպիսի հատկություն ունի, օրինակ, էլեկտրամագնիսական դաշտի էներգիա-իմպուլսի թենզորը։ Վակուումում դաշտի լագրանժյանը բացահայտ կախված չէ կոորդինատներից, այդ պատճառով ունենք էներգիայի-իմպուլսի հոսքին զուգորդվող պահպանվող մեծություն։
Դիֆերենցիալ հավասարումներ
խմբագրելԴիցուք ունենք գործողության ֆունկցիոնալով վարիացիոն խնդիր։ Այստեղ -ը լագրանժյանն է. -ն՝ անկախ փոփոխականներ, -ն՝ կախյալ փոփոխականներ, այսինքն՝ ֆունկցիաներ -ից։ կարող է կախված լինել նաև -ի ածանցյալներից ըստ -ի, պարտադիր չէ միայն առաջին կարգի։
Վարիացիոն խնդիրը այսպիսի ֆունկցիոնալի համար հանգեցնում է Էյլեր-Լագրանժի դիֆերենցիալ հավասարումների, որոնք կարելի է գրել
տեսքով, որտեղ -երը Էյլեր-Լագրանժի օպերատորներն են՝
,
-ն ֆունկցիայի ածանցյալն է ըստ փոփոխականի։ Բազմակետը նշանակում է, որ եթե -ը կախված է առաջինից բարձի կարգի ածանցյալներից, ապա -ին պետք է ավելացնել համապատասխան գումարելիները։ Ամփոփ գրառմամբ ,
որտեղ — մուլտինդեքսն է։ Գումարումը կատարվում է ըստ բոլոր բաղադրիչների այնպես, որ ածանցյալը մտնում է -ի մեջ։
Նյոթերի թեորեմը կապում է ֆունկցիոնալի այսպես կոչված վարիացիոն սիմետրիաները պահպանման օրենքների հետ, որոնք տեղի են ունենում Էյլեր-Լագրանժի հավասարումների լուծումներով։
Պահպանման օրենքներ
խմբագրելՊահպահման օրենքները դիֆերենցիալ հավասարումների համակարգի համար
տեսքի արտահայտություններ են, ինչը ճիշտ է այդ համակարգի հավասարումների համար, այնպես որ եթե դրա մեջ տեղադրենք այդ դիֆերենցիալ հավասարումները, կստանանք նույնություն։ Տվյալ դեպքում դիտարկվում են Էյլեր-Լագրանժի դիֆերենցիալ հավասարումներ։ Այստեղ -ն լրիվ դիվերգենցիա (լրիվ ածանցյալներով դիվերգենցիալ) է ըստ -ի։ -ն -ի, -ի և ըստ -ի -ի ածանցյալների հարթ ֆունկցիաներ են։ Պահպանման տրիվալ օրենքներ են կոչվում այն պահպանման օրենքները,
- որոնց համար -ն ինքնին նույնություն է՝ առանց որևէ դիֆերենցիալ հավասարում հաշվի առնելու, կամ
- որոնց համար -ն 0 է դառնում, հենց տեղադրում ենք դիֆերենցիալ հավասարումները՝ առանց դիվերգենցիաները հաշվելու (լուծումներում պահպանվում է նույնական զրոն), կամ
- որոնց համար -ն նախորդ դեպքերի գծային կոմբինացիան է։
Եթե և ֆունկցիաներով երկու պահպանման օրենքների համար տարբերությունը պահպանման տրիվիալ օրենք է, ապա այդպիսի պահպանման օրենքները կոչվում են համարժեք։
Յուրաքանչյուր պահպանման օրենք համարժեք է բնութագրական ձև ունեցող պահպանման օրենքին, այսինքն այնպիսի օրենքին, որի համար
,
որտեղ -ն արտահայտություններ են, որոնք մտնում են դիֆերենցիալ հավասարումների որոշ համակարգերի մեջ. ։ Նկարագրվող դեպքի համար և
։
կախված են -ից, -ից և ըստ -ի -ի ածանցյալներից և կոչվում են պահպանման օրենքի բնութագրեր։
Վարիացիոն սիմետրիաներ
խմբագրելԴիցուք ունենք ընդհանրացված վեկտորական դաշտ.
։
«Ընդհանրացումն» այն իմաստով է, որ և -ն կարող են կախված լինել ոչ միայն -ից և -ից, այլև -ի ածանցյալներից ըստ -ի։
Սահմանում. -ն կոչվում է ֆունկցիոնալի վարիացիոն սիմետրիա, եթե գոյություն ունի համախումբ այնպես, որ
։
-ն -ի շարունակությունն է։ Շարունակությունը հաշվի է առնում, որ -ի գործողությունը -ի և -ի վրա առաջացնում է նաև ածանցյալների անվերջ փոքր փոփոխություն, և տրվում է
բանաձևերով։ Շարունակության համար բանաձևում պետք է բացի -ից վերցնել այնպիսի -ով բաղադրիչներ, որոնց համար -ն մտնում է -ի մեջ, կամ, ընդհանուր դեպքում, այն արտահայտության մեջ, որի վրա ազդում է շարունակությունը։
Վարիացիոն սիմետրիայի սահմանման իմաստն այն է, որ -ն անվերջ փոքր ձևափոխություն է, որոնք առաջին աստիճանում փոխում են ֆունկցիոնալն այնպես, որ Էյլեր-Լագրանժի հավասարումները ձևափոխվում են համարժեք հավասարումների։ Ճիշտ է հետևյալ թեորեմը.
Եթե -ն վարիացիոն սիմետրիա է, ապա -ն հանդիսանում է Էյլեր-Լագրանժի հավասարումների (ընդհանրացված) սիմետրիա.
։
Այս բանաձևը նշանակում է, որ արտահայտությունների անվերջ փոքր փոփոխությունները, որոնք այստեղ գրված են տեսքով, լուծումներում 0 են դառնում։
Վեկտորական դաշտերի բնութագրեր
խմբագրելֆունկցիաների համախումբը (վերը բերված նշանակումներով) կոչվում է վեկտորական դաշտի բնութագիր։ -ի փոխարեն կարելի է վերցնել
Վեկտորական դաշտ, որը կոչվում է -ի էվոլյուցիոն ներկայացուցիչ։
-ն և -ն ըստ էության նույն սիմետրիան են սահմանում, այդ պատճառով եթե հայտնի են -ի բնութագրերը, կարելի է համարել, որ դրանով սիմետրիան տրված է։ -ի շարունակությունը որոշվում է -ի շարունակության նման, բայց ֆորմալ տեսանկյունից ավելի պարզ է, քանի որ կարիք չկա առանձին հաշվի առնելու - երի ներդրումները։
Նյոթերի թեորեմը կապ է հաստատում պահպանման օրենքների բնութագրերի և վեկտորական դաշտերի բնութագրերի միջև։
Նյոթերի թեորեմ
խմբագրելընդհանրացված վեկտորական դաշտը սահմանում է ֆունկցիոնալի սիմետրիաների խումբը միայն և միայն այն դեպքում, եթե նրա բնութագիրը պահպանման օրենքի բնութագիրն է Էյլեր-Լագրանժի համապատասխան հավասարումների համար։
Պահպանման օրենքներ
խմբագրելԴասական մեխանիկայում էներգիայի, իմպուլսի և իմպուլսի մոմենտի պահպանման օրենքներն արտածվում են համակարգի լագրանժյանի համասեռություն-իզոտրոպությունից. լագրանժյանը (Լագրանժի ֆունկցիան) ինքնին չի փոփոխվում ժամանակի ընթացքում և չի փոփոխվում տարածության մեջ համակարգի տեղափոխությունից կամ պտույտից։ Ըստ էության դա նշանակում է, որ լաբորատորիայում գտնվող որևէ փակ համակարգի դիտարկելիս, անկախ լաբորատորիայի դիրքից և փորձն անցկացնելու ժամանակից, կստացվեն նույն արդյունքները։ Համակարգի լագրանժյանի մյուս սիմետրիաները, եթե կան այդպիսիք, համապատասխանում են տվյալ համակարգում պահպանվող այլ մեծությունների (շարժման ինտեգրալների), օրինակ, երկու մարմինների գրավիտացիոն և կուլոնյան խնդրի լագրանժյանի սիմետրիան հանգեցնում է որ միայն էներգիայի, իմպուլսի և իմպուլսի մոմենտի պահպանման, այլև՝ Լապլա-Ռունգե-Լենցի վեկտորի պահպանման։
Կիրառություններ
խմբագրելՆյոթերի թեորեմը թույլ է տալիս նշանակալի տեղեկություն ստանալ դիֆերենցիալ հավասարումների համակարգի լուծումների հատկությունների մասին՝ ելնելով միայն նրանց սիմետրիայից։ Այն նաև սովորական դիֆերենցիալ հավասարումների ինտեգրման եղանակներից մեկն է, քանի որ թույլ է տալիս որոշ դեպքերում գտնել հավասարումների համակարգի առաջին ինտեգրալը և այդպիսով նվազեցնել անհայտ ֆունկցիաների թիվը։ Օրինակ,
- Համակարգի իմպուլսի պահպանումը բխում է տարածական տեղաշարժերի նկատմամբ համակարգի ինվարիանտությունից։ Օրինակ, եթե X առանցքի երկայնքով տեղաշարժը չի փոխում հավասարումների համակարգը, ուրեմն այդ առանցքի երկայնքով իմպուլսը պահպանվում է։
- Իմպուլսի մոմենտի պահպանումը բխում է տարածության պտույտների նկատմամբ համակարգի ինվարիանտությունից։
- Էներգիայի պահպանումը ժամանակի համասեռության՝ ժամանակի հաշվարկի սկիզբը կամայական ձևով տեղաշարժելու կարելիության հետևանք է։
Մասնակի ածանցյալներով հավասարումների դեպքում անհրաժեշտ է փնտրել անվերջ թվով առաջին ինտեգրալներ։ Նույնիսկ դրանք իմանալով՝ սովորաբար հեշտ չէ գտնել ընդհանուր լուծում։
Հիմնարար բնույթի շնորհիվ Նյոթերի թեորեմը կիրառվում է ֆիզիկային այնպիսի բնագավառներում, ինչպես քվանտային մեխանիկան է՝ հենց իմպուլսի, իմպուլսի մոմենտի և այլ հասկացությունները սահմանելու համար։ Հավասարումների ինվարիանտությունը որոշ սիմետրիաների նկատմամբ այդ մեծությունների միակ իսկությունն է դառնում և երաշխավորում է նրանց պահպանումը։
Դաշտի քվանտային տեսությունում Նյոթերի թեորեմի համակերպը Ուորդ-Տակահաշիի նույնաությունն է, որը թույլ է տալիս ստանալ հավելյալ պահպանման օրենքներ։ Օրինակ, էլեկտրական լիցքի պահպանման օրենքը բխում է մասնիկի կոմպլեքս ալիքային ֆունկցիայի փուլի փոփոխության նկատմամբ ֆիզիկական համակարգի ինվարիանտությունից և էլեկտրամագնիսական դաշտի վեկտորական ու սկալյար պոտենցիալների համապատասխան տրամաչափավորումից։
Նյոթերի լիցքը կիրառվում է նաև ստացիոնար սև խոռոչի էնտրոպիան հաշվելու համար[2]։
Ծանոթագրություններ
խմբագրել- ↑ Noether E (1918). «Invariante Variationsprobleme». Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse. 1918: 235–257.
- ↑ Calculating the entropy of stationary black holes. (անգլ.)
Գրականություն
խմբագրել- Арнольд В. И. Математические методы классической механики, изд. 5-ое, — М, Едиториал УРСС, 2003, ISBN 5-354-00341-5
- Ибрагимов Н. Х. Группы преобразований в математической физике. — М, Наука, 280 с., 1983 г.
Արտաքին հղումներ
խմբագրել- Նյոթերի հոդվածներն անգլերեն թարգմանությամբ
- Ջոն Բաեսի հոդվածը Նյոթերի թեորեմի մասին (անգլ.)
- Nina Byers, E. Noether’s Discovery of the Deep Connection Between Symmetries and Conservation Laws
- Նյոթերի թեորեմը MathPages կայքում (անգլ.)
- Symmetric energy-momentum tensor in Maxwell, Yang-Mills, and Proca theories obtained using only Noether’s theorem. (անգլ.)
- Giachetta G., Mangiarotti L.,Sardanashvily G. On the notion of gauge symmetries of generic Lagrangian field theory. — J. Math. Phys. 50 (2009) 012903; arXiv 0807.3003.