Կլայն-Գորդոնի հավասարում
Կլայն-Գորդոնի հավասարում (երբեմն՝ Կլայն-Ֆոկ-Գորդոնի հավասարում կամ Կլայն-Գորդոն-Ֆոկի հավասարում,Կլայն-Ֆոկի հավասարում[1][2]), Շրյոդինգերի հավասարման ռելյատիվիստական տարբերակը։
- ,
Կամ, բնական միավորներով (որտեղ )՝
- ,
որտեղ -ը դ’Ալամբերի օպերատորն է։
Կլայն-Գորդոնի հավասարումը կիրառվում է զանգված ունեցող (հանգստի զանգված) արագ շարժվող մասնիկների համար։ Կիրառելի է սկալյար զանգվածեղ դաշտերի դեպքում։ Կարող է ընդհանրացվել ամբողջ և կիսաամբողջ սպիներով մասնիկների համար[3]։ Բացի այդ, պարզ է, որ այս հավասարումը ալիքային հավասարման ընդհանրացումն է՝ պիտանի զանգված չունեցող սկալյար և վեկտրական դաշտերի նկարագրման համար։
Կլայն-Գորդոնի հավասարումով նկարագրվող մեխանիկական համակարգերը (իրական կամ երևակայական) կարող են լինել ալիքային հավասարումով նկարագրվող համակարգերի ձևափոխություններ, օրինակ.
- Միաչափ դեպքում՝ առաձգական (Հուկի) տակդիրին ամրացված ձգված ծանր լար։
- Մակրոսկոպիկորեն իզոտրոպ բյուրեղ, որի յուրաքանչյուր ատոմը գտնվում է, բացի հարևան ատոմների հետ կապից, նաև տարածության մեջ ֆիքսված քառակուսի պոտենցիալ փոսում։
- Իրական բյուրեղների դեպքում ավելի իրատեսական է դիտարկել լայնական տատանումների մոդերը, որոնց դեպքում, օրինակ, ատոմների հարևան շերտերը տատանվում են հակափուլով։ Այդպիսի մոդերը (գծային մոտավորությամբ) ենթարկվում են Կլայն-Գորդոնի երկչափ հավասարմանը, որտեղ կոորդինատները շերտերի հարթությունում են։
Հավասարումը, որտեղ վերջին («զանգվածեղ») անդամն ունի սովորականին հակառակ նշան, տեսական ֆիզիկայում նկարագրում է տախիոն։ Հավասարման այսպիսի տարբերակը թույլ է տալիս պարզա մեխանիկական իրագործում։
Կլայն-Գորդոնի հավասարումն ազատ մասնիկի համար (վերը բերված դեպքը) պարզ լուծում ունի սինուսոիդային հարթ ալիքների տեսքով։
- Դիտողություն. Տարածական ածանցյալները տեղադրելով զրո (ինչը քվանտային մեխանիկայում համապատասխանում է մասնիկի զրո իմպուլսին), Կլայն-Գորդոնի սովորական հավասարման համար կունենանք հաճախությամբ հարմոնիկ տատանակ, ինչը համապատասխանում է մասնիկի զանգվածով որոշվող, հանգստի ոչ զրոյական էներգիային։ Հավասարման տախիոնային տարբերակն այդ դեպքում կայուն չէ, իսկ լուծումն ընդհանուր դեպքում ներառում է անսահմանափակ աճող էքսպոնենտ։
Պատմություն
խմբագրելԿլայն-Գորդոնի հավասարումը սկզբում, մինչև իր ոչ ռելյատիվիստական հավասարումը գրելը, գրել է Էրվին Շրյոդինգերը։ Շրյոդինգերը հրաժարվում է այդ հավասարումից, քանի որ չի կարողանում էլեկտրոնի սպինը ընդգրկել դրա մեջ ։ Պարզեցնելով Կլայն-Գորդոնի հավասարումը՝ Շրյոդինգերը գրում է «իր» հավասարումը։
1926 թ., Շրյոդինգերի հավասարման հրապարակումից հետո, Ֆոկը[4][5] հոդված է գրում մագնիսական դաշտերի դեպքում դրա ընդհանրացման մասին, որտեղ ուժերը կախված են արագությունից, և Շրյոդինգերից անկախ արտածում է այդ հավասարումը։ Ե՛վ Օսկար Կլայնը[6] (նրա աշխատանքը ավելի շուտ է ստեղծվել, բայց հրատարակվել է Ֆոկի հոդվածից հետո), և՛ Վլադիմիր Ֆոկը կիրառել են Կալուցի-Կլայնի մեթոդը։ Ֆոկը նաև ներմուծել է տրամաչափային տեսություն ալիքային հավասարման համար։
Գորդոնի հոդվածը (1926 թ. վերջին) նվիրված էր Քոմփթոնի էֆեկտին[7]։
Արտածում
խմբագրելԱզատ մասնիկի էներգիայի ոչ ռելյատիվիստական հավասարումը հետևյալն է՝
- ։
Քվանտացնելով սա, ստանում ենք Շրյոդինգերի ոչ ռելյատիվիստական հավասարումն ազատ մասնիկի համար՝
- ,
որտեղ
մեծությունը իմպուլսի օպերատորն է, ∇-ով նշանակված է նաբլա օպերատորը, իսկ
իսկ էներգիայի օպերատորն է։
Շրյադինդերի հավասարումը ռելյատիվիստիկորեն կովարիանտ չէ, այսինքն՝ այն հաշվի չի առնում Այնշտայնի հատուկ հարաբերականությունը։
Էներգիան հատուկ հարաբերականությունից՝
Կիրառելով դա և տեղադրելով իմպուլսի և էներգիայի քվանտամեխանիկական օպերատորները, կստանանք
հավասարումը։
Այս արտահայտության հետ աշխատելը աննպատակահարմար է արմատի առկայության պատճառով։ Ուստի Կլայնը և Գորդոնը գործածել են քառակուսի բարձրացրած մեծությունը՝
- ,
որը, քվանտացվելով, տալիս է
- ։
Վերջինս հնարավոր է պարզեցնել՝
- ։
Վերախմբավորելով անդամները՝ ստանում ենք
- ։
Այս հավասարումը հնարավոր է կիրառել ինչպես իրական, այնպես էլ՝ կեղծ արժեքներով դաշտերի համար։
Կիրառելով Մինկովսկու մետրիկական ինվերսիան diag(−c2, 1, 1, 1), ստանում ենք
կովարիանտ նշանակումներով։ Սա հաճախ կրճատ գրվում է որպես
որտեղ
և
- ։
Սա կոչվում է դ'Ալամբերի օպերատոր։
Այս ձևով այն այսօր մեկնաբանվում է որպես ռելյատիվիստական դաշտի հավասարում 0 սպինով մասնիկների համար։ Ավելին, Դիրակի հավասարման ցանկացած լուծում (կիսաամբողջ սպինով մասնիկների համար) ինքնաբերաբար Կլայն-Գորդոնի հավասարման լուծում է հանդիսանում, չնայած Կլայն-Գորդոնի հավասարման ոչ բոլոր լուծումներն են Դիրակի հավասարման լուծում։ Պետք է նշել, որ Կլայն-Գորդոնի հավասարումը շատ նման է Պրոկի հավասարմանը։
Կլայն-Գորդոնի հավասարումը պոտենցիալային դաշտի համար
խմբագրելԿլայն-Գորդոնի հավասարումը կարելի է ընդհանրացնել՝ նկարագրելով որևէ V(ψ) պոտենցիալով դաշտը որպես[8]
- ։
Կլայն-Գորդոնի հավասարման լուծումն ազատ մասնիկի համար
խմբագրելԱզատ մասնիկի համար Կլայն-Գորդոնի
հավասարման լուծումը կարելի է փնտրել, ինչպես հաստատուն գործակիցներով ցանկացած գծային դիֆերենցիալ հավասարման համար հարթ ալիքների վերադրման (այսինքն՝ ցանկացած վերջավոր կամ անվերջ գծային կոմբինացիայի) տեսքով՝
այդպիսի ամեն ալիք տեղադրելով հավասարման մեջ, ստանում ենք պայման -ի և -ի համար.
- ։
Ինչպես հեշտ է նկատել, հարթ ալիքը նկարագրում է որոշակի էներգիայիով և իմպուլսով մաքուր վիճակ (այսինքն, համապատասխան օպերատորների սեփական ֆունկցիա է)։ Էներգիան և իմպուլսը (այսինքն, այդ օպերատորների սեփական արժեքները), կարելի է հաշվել, ինչպես ոչ ռելյատիվիստական մասնիկի համար.
- ։
Գտնված և առնչությունը այդ դեպքում նորից տալիս է ոչ զրոյական զանգվածով ռելյատիվիստական մասնիկի էներգիայի և իմպուլսի միջև կապի հավասարումը.
- ։
Ընդ որում պարզ է, որ միջին մեծությունների համար առնչությունը կիրակականա ոչ միայն որոշակի էներգիայով և իմպուլսով վիճակների համար, այլև նրանց ցանկացած վերադրման, այսինքն Կլայն-Գորդոնի հավասարման ցանկացած լուծման համար (ինչը, մասնավորապես, ապահովում է այդ առնչության իրականացումը դասական սահմանում)։
Զանգված չունեցող մասնիկների համար կարող ենք վերջին հավասարման մեջ տեղադրել ։ Այդ դեպքում զանգված չունեցող մասնիկների համար կստանանք դիսպերսիայի օրենքը (էներգիայի և իմպուլսի առնչությունը)
տեսքով։ Կիրառելով խմբային արագության բանաձևը դժվար չէ ստանալ էներգիան և իմպուլսը արագության հետ կապող սովորական ռելյատիվիստական բանաձևեր. սկզբունքորեն այդ նույն արդյունքին կարելի է հասնել՝ պարզապես հաշվելով համիլտոնյանի կոմուտատորը կոորդինատի հետ, բայց Կլայն-Գորդոնի դեպքում բախվում ենք համիլտոնյանը բացահայտ տեսքով գրելու դժվարությանը (ակնհայտ է միայն համիլտոնյանի քառակուսին)։
Գործողություն
խմբագրելԿլայն-Գորդոնի հավասարումը հնարավոր է ներկայացնել վարիացիաների եղանակով՝ գործողությունը ներկայացնելով որպես
- ,
որտեղ ψ-ն Կլայն-Գորդոնի դաշտն է, m-ը՝ դրա զանգվածը։ ψ-ի կոմպլեքս համալուծը է։ Եթե սկալյար դաշտը իրական արժեքով է ընտրվում, ապա ։ Կիրառելով հիլբերտյան էներգիայի և իմպուլսի թենզորը Լագրանժյան խտության (ինտեգրալի մեծությունը) հանդեպ, կարող ենք արտածել սկալյար դաշտի էներգիայի և իմպուլսի թենզորը։ Այն կլինի
- ։
Էլեկտրամագնիսական փոխազդեցություն
խմբագրելՏրամաչափային ինվարիանտի ճանապարհով որևէ դաշտ էլեկտրամագնիսականության հետ փոխազդեցության մեջ դնելու համար պետք է ածանցյալի օպերատորները փոխարինել տրամաչափային կովարիանտ ածանցյալի օպերատորներով։ Այս դեպքում Կլայն-Գորդոնի հավասարումը կդառնա
բնական միավորներով, որտեղ A-ն վեկտորական պոտենցիալն է։ Հնարավոր է ավելացնել ավելի բարձր կարգով անդամներ, օրինակ
- ։
Այս անդամները 3+1 չափողականություններում չեն վերանորմավորվում։
Դաշտի հավասարումը լիցքավորված սկալյար դաշտի համար բազմապատկվում է i-ով, ինչը նշանակում է, որ դաշտը կոմպլեքս է։ Լիցքավորված լինելու համար դաշտը պետք է ունենա երկու բաղադրիչներ՝ իրական և կեղծ մասեր, որոնք շրջելի են մեկը մյուսի հանդեպ։
Լիցքավորված սկալյարի համար գործողությունը չլիցքավորված սկալյարի կովարիանտ տարբերակն է՝
- ։
Գրավիտացիոն փոխազդեցություն
խմբագրելԸնդհանուր հարաբերականության մեջ ներառելով գրավիտացիայի էֆեկտը՝ Կլայն-Գորդոնի հավասարման համար կունենանք (մետրիկ սիգնատուրով)[9]
կամ դրա համարժեքը՝
- ,
որտեղ gαβ-ն մետրիկ թենզորի ինվերսիան է, այսինքն՝ գրավիտացիոն պոտենցիալ դաշտը, g-ն մետրիկ թենզորի դետերմինանտն է, ∇μ-ն կովարիանտ ածանցյալն է, Γσμν-ն՝ Քրիստոֆելի սիմվոլը, այսինքն՝ գրավիտացիոն ուժային դաշտը։
Տես նաև
խմբագրելԾանոթագրություններ
խմբագրել- ↑ Ю.Н. Демков. Развитие теории электронно-атомных столкновений в Ленинградском университете
- ↑ Л. Д. Фаддеев. Новая жизнь полной интегрируемости // УФН, 2013, май (том 183, № 5), с. 490
- ↑ см. Боголюбов Н. Н., Ширков Д. В. - "Введение в теорию квантованных полей" §§ 4,6
- ↑ Vladimir Fock ; Zeitschrift für Physik 38 (1926) 242
- ↑ Vladimir Fock ; Zeitschrift für Physik 39 (1926) 226
- ↑ Klein, O. 1926. Quantentheorie und fünfdimensionale Relativitätstheorie. Zeitschrift für Physik 37:895–906.
- ↑ «W.Gordon, "Эффект Комптона в теории Шредингера.", 1926» (PDF). Արխիվացված է օրիգինալից (PDF) 2015 թ․ հունվարի 2-ին. Վերցված է 2015 թ․ ապրիլի 4-ին.
- ↑ David Tong, Lectures on Quantum Field Theory, Lecture 1, Section 1.1.1
- ↑ S.A. Fulling, Aspects of Quantum Field Theory in Curved Space–Time, Cambridge University Press, 1996, p. 117
Արտաքին հղումներ
խմբագրել- Hazewinkel, Michiel, ed. (2001), [www.encyclopediaofmath.org/index.php?title=p/k055480 "Klein–Gordon equation"], Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
- Weisstein, Eric W., "Klein–Gordon equation", MathWorld.
- Linear Klein–Gordon Equation at EqWorld։ The World of Mathematical Equations.
- Nonlinear Klein–Gordon Equation at EqWorld։ The World of Mathematical Equations.
- Introduction to nonlocal equations.