Միջին երկրաչափական
Միջին երկրաչափական -մի քանի դրական իրական թվերի համար այն թիվն է, որով կարելի է փոխարինել թվերից յուրաքանչյուրը այնպես, որ այդ թվերի արտադրյալը մնա անփոփոխ։Առավել ճշգրիտ․
- ։
Երկու թվերի միջին երկրաչափականը կոչվում է նաև «միջին համամասնական»[1], քանի որ երկու և թվերի միջին երկրաչափականը օժտված է հետևյալ հատկությամբ․ , այսինքն․ միջին երկրաչափականը հարաբերվում է առաջին թվին այնպես, ինչպես երկրորդ թիվը միջին երկրաչափականին։
Հատկությունները
խմբագրել- ինչպես ցանկացած միջին արժեք՝ միջին երկրաչափականը ընկած է այդ թվերի մեծագույն և փոքրագույն արծեքների միջև․
- Երկու թվերի միջին երկրաչափականը այդ թվերի միջին թվաբանական- հարմոնիկն է, այսինքն հավասար է երկու հաջորդականությունների սահմանին․
- երկու թվերի միջին երկրաչափականը հավասար է այդ թվերի միջին թվաբանականի և միջին հարմոնիկի միջին եկլրաչափականին[2]։
Կշռված երկրաչափական միջին
խմբագրելԿշռված երկրաչափական միջինը իրական թվերի խմբի համար իրական զանգվածներով որոշվում է հետևյալ կերպ․
Այն դեպքում, երբ բոլոր զանգվածները իրար հավասար են, կշռված երկրաչափական միջինը հավասար է միջին երկրաչափականին։
Երկրաչափության մեջ
խմբագրելՈւղղանկյուն եռանկյան ներքնաձիգին իջեցրած բարձրությունը հավասար է ներքնաձիգի վրա էջերի պրոյեկցիաների միջին երկրաչափականին։ Իսկ յուրաքանչյուր էջ հավասար է ներքնաձիգի և նրա վրա այդ էջի պրոյեկցիայի միջին երկրաչափականին։ Սա հնարավորություն է տալիս երկրաչափորեն կառուցելու երկու հատվածների միջին երկրաչափականը․ հարկավոր է կառուցել շրջանագիծ, որի տրամագիծը այդ երկու հատվածների գումարն է, իսկ հատվածների միացման կետում կանգնեցված ուղղահայացը մինչև շրջանագծի հետ հատումը կլինի որոնելի մեծությունը Մինչև գնդի հորիզոն հեռավորությունը հավասար է գնդի ամենամոտ և ամենահեռու կետերի հեռավորությունների միջին երկրաչափականին։
Ֆինանսական
խմբագրելԵրկրաչափական միջինը ժամանակ առ ժամանակ օգտագործվել է ֆինանսական ցուցանիշները հաշվարկելու համար (միջին ցուցանիշը գերազանցում է ինդեքսի բաղադրիչները)։ Օրինակ ՝ նախկինում FT 30 ինդեքսը օգտագործում էր երկրաչափական միջակայք[3]։ Այն նաև օգտագործվում է Միացյալ Թագավորությունում և Եվրոպական Միությունում վերջերս ներդրված « RPIJ » գնաճի չափման մեջ։ Սա ազդեցություն է թողնում ցուցանիշի վրա շարժվող շարժումների ազդեցությանը `թվաբանության միջին օգտագործման համեմատությամբ[3]։
Համեմատությունը թվաբանական միջինի հետ
խմբագրելԴրական թվերի ոչ դատարկ տվյալների հավաքածուի երկրաչափական միջինը միշտ առավելագույնը դրանց թվաբանական միջինն է։ Հավասարությունը ձեռք է բերվում միայն այն դեպքում, երբ տվյալների ամբողջ շարքում բոլոր համարները հավասար են. հակառակ դեպքում երկրաչափական միջինը փոքր է։ Օրինակ․ 242-ի և 288-ի երկրաչափական միջին ցուցանիշը հավասար է 264-ին, մինչդեռ դրանց թվաբանական միջինը 265 է։ Մասնավորապես, սա նշանակում է, որ երբ ոչ միանման թվերի մի շարք ենթակա է միջին պահպանման տարածման , այսինքն ` հավաքածուն իրարից ավելի «տարածվում» է, իսկ թվաբանական միջինը թողնելով անփոփոխ ՝ դրանց երկրաչափական միջին քանակը նվազում է[4]։
Ընդհանրացում
խմբագրել- Միջին երկրաչափականը կարելի է դիտարկել որպես միջին աստիճաննայինների սահման․
при .
- Միջին երկրաչափականը հանդիսանում է Կալմագորովի միջին երբ ։
Տես նաև
խմբագրելԾանոթագրություններ
խմբագրել- ↑ «Среднее пропорциональное». հոդվածը Սովետական մեծ հանրագիտարանում
- ↑ Роу С. Геометрические упражнения с куском бумаги. — 2-е изд. — Одесса: Матезис, 1923.
- ↑ 3,0 3,1 Rowley, Eric E. (1987). The Financial System Today. Manchester University Press. ISBN 0719014875.
- ↑ Mitchell, Douglas W. (2004). «More on spreads and non-arithmetic means». The Mathematical Gazette. 88: 142–144.