«Քվազար»–ի խմբագրումների տարբերություն

Content deleted Content added
չ կետադրական նշանը ծանոթագրությունից հետո oգտվելով ԱՎԲ
→‎top: տառասխալների ուղղում
Տող 1.
{{Վիքիֆիկացում}}
[[Պատկեր:Gb1508 illustration.jpg|thumb|ԳԲԻ508]]
Երկնային ծագում ունեցող ռադիոալիքների ճառագայթման աղբյուրը՝ քվազարը, հզոր էնեգիայով օժտված հեռավոր գալակտիկայի կորիզ է։է հանդիսանում։ Առաջին անգամ այդ չափազանց պայծառ երկնային մարմինների ուշադրության արժանանալու պատճառը նրադրանց էլեկտրամագնիսական ճառագայթման սպեկտրում կարմիր շեղման գրանցումն էր ինչպես տեսանելի լույսի, այնպես էլ ռադիոալիքային տիրույթներում։ Այլ խոսքովխոսքով՝ աստղը կազմող նյութի ճառագայթման հաճախությունը ավելի փոքր էր, քան երկրային պայմաններում նույն նյութի ճառագայթման հաճախությունը։ Բացի այդ, ճառագայթման անկյունային բաշխվածությունը առավելապես նմանեցվում էր կետային աղբյուրի, ասել է թե աստղերի ճառագայթմանը, քան ձգված աղբյուրի տեսքով գալաքտիկաներիգալակտիկաների ճառագայթմանը<ref>{{ru}} Засов А. В., Постнов К. А. Ядра галактик. Общие сведения. // Общая астрофизика. — Фрязино: Век 2, 2006. — Т. 3. — С. 371. — 496 с. — ISBN 5-85099-169-7</ref>։
 
== Ընդհանուր նկարագրություն ==
Առաջին քվազարները հայտնաբերվել են 1950-ական թվականների վերջին և 1960-ակաների սկզբին։ Սկզբում քվազարները սահմանվում էին որպես երկնային մարմինների մի դաս, որոնք օպտիկական տիրույթում նման են աստղերին, բայց ունեն ուժեղ ռադիոճառագայթում և չափազանց փոքր ճառագայթման անկյունային բաշխվածություն<ref>{{ru}} {{en}} Стивен П. Маран. Астрономия для «чайников» = Astronomy for dummies. — М.: Издательский дом «Вильямс», 2004. — С. 198-200. — 256 с. — ISBN 5-8459-0612-1]</ref>։ Այս սահմանումը ընդհանրապես ասած ճիշտ է, սակայն ժամանակի ընթացքում հայտնաբերվցինհայտնաբերվեցին նաև «հանգիստ» քվազարներ, որոնք զուրկ էին ուժեղ ռադիոճառագայթումից։ Տեսություններից մեկի համաձայն քվազարները իրենցից ներկայացնում են նախնական էտապում գտնվող զարգացող գալակտիկաներ, որոնցում վիթխարի զանգվածով սև խոռոչը կլանում է շրջակա նյութը։ Առաջին քվազարը հայտնաբերվել է 1950-ականների վերջին Ալան Սենդջիջի և Տոմաս Մետյուզի կողմից և համարակալվել է որպես 3C 48։ 1963-ին, երբ արդեն հայտնի էին 5 քվազարներ, աստղագետ Մարտին Շմիտը ապացուցեց, որ քվազարների սպեկտրը ուժեղ շեղված է դեպի կարմիրի սահմանը։ Ընդունելով, որ այդ կարմիրի շեղման պատճառը տիեզերական բոլոր մարմիններին բնորոշ Հաբլի երևույթն է, հաջողվեց որոշել այդ մարմինների դիրքը տիեզերքում։ Անմիջապես դրանից հետո Յ. Ն. Եֆրեմովի և Ա. Ս. Շառովի կողմից 3C 273 քվազարի ֆոտոմետրական չափումների արդյունքում բացահայտվեց քվազարի պայծառության պարբերական փոփոխման երևույթը՝ մի քանի օր պարբերությամբ։ Ներկայումս ընդունված է համարել, որ ճառագայթման աղբյուր է հանդիսանում գալակտիկայի կենտրոնում գտնվող վիթխարի զանգվածով սև խոռոչը և հետևաբար քվազարի կարմիրի շեղումը մեծ է տիեզերեկանից՝ Էյնշտեյնի ընդհանուր հարաբերականության տեսության գրավիտացիոն շեղման չափով<ref>{{ru}} А. Д. Чернин, Л. Н. Бердников, А. С. Расторгуев «Большая наука астрономия»</ref>։ Մինչ այժմ հայտնաբերված քվազարների քանակը շատ դժվար է որոշել, քանի որ չկա հստակ սահման քվազարների և այլ ակտիվ գալակտիկաների միջև։ Ամենամոտ և ամենապայծառ քվազարներից է համարվում 3C 273, որն ունի 13m պայծառություն և 2.44 միլիարդ լուսատարով հեռու է Երկրից։ Ամենահեռու քվազարները իրենց ահռելի պայծառության (հասարակ գալակտիկաների պայծառությունը 100 անգամ գերազանցող) շնորհիվ գրանցվում են ռադիոտելեսկոպների օգնությամբ 12 միլիարդ լուսային տարի հեռավորություների վրա։ Վերջին հետազոտությունները ցույց են տվել, որ քվազարների մեծամասնությունը գտնվում են շատ մեծ չափերով էլիպտիկ գալակտիկաների մերձակայքում։ Քվազարներին համեմատում են տիեզերքի փարոսների հետ։ Նրանք երևում են մեծ հեռավորություններից, նրանցով հետազոտում են տիեզերքի զարգացումն ու կառուցվածքը, որոշում են նյութի բաղադրությունը։
Առաջին քվազարը հայտնաբերվել է 1950-ականների վերջին Ալան Սենդջիջի և Տոմաս Մետյուզի կողմից և համարակալվեց որպես 3C 48։ 1963-ին, երբ արդեն հայտնի էին 5 քվազարներ, աստղագետ Մարտին Շմիտը ապացուցեց, որ քվազարների սպեկտորը ուժեղ շեղված է դեպի կարմիրի սահմանը։ Ընդունելով, որ այդ կարմիրի շեղուման պատճառը տիեզերական բոլոր մարմիններին բնորոշ Հաբբլի երևույթն է, հաջողվեց որոշել այդ մարմինների դիրքը տիեզերքում։ Անմիջապես դրանից հետո Յ. Ն. Եֆրեմովի և Ա. Ս. Շառովի կողմից 3C 273 քվազարի ֆոտոմետրական չափումների արդյունքում բացահայտվեց քվազարի պայծառության պարբերական փոփոխման երևույթը՝ մի քանի օր պարբերությամբ։ Ներկայումս ընդունված է համարել, որ ճառագայթման աղբյուր է հանդիսանում գալակտիկայի կենտրոնում գտնվող վիթխարի զանգվածով սև խոռոչը և հետևաբար քվազարի կարմիրի շեղումը մեծ է տիեզերեկանից՝ Էնշտեյնի ընդհանուր հարաբերականության տեսության գրավիտացիոն շեղման չափով<ref>{{ru}} А. Д. Чернин, Л. Н. Бердников, А. С. Расторгуев «Большая наука астрономия»</ref>։
Մինչև հիմա հայտնաբերված քվազարների քանակը շատ դժվար է որոշել, քանի որ չկա հստակ սահման քվազարների և այլ ակտիվ Գալակտիկաների մինչև։ Ամենամոտ և ամենապայծառ քվազարներից է համարվում 3C 273, որն ունի 13m պայծառություն և 2.44 միլլիարդ լուսային տարով հեռու է մեզանից։ Ամենահեռու քվազարները իրենց ահռելի պայծառության (հասարակ Գալակտիկաների պայծառությունը 100 անգամ գերազանցող) շնորհիվ գրանցվում են ռադիոտելեսկոպների օգնությամբ 12 միլլիարդ լուսային տարի հեռավորություների վրա։ Վերջին հետազոտությունները ցույց են տվել, որ քվազարների մեծամասնությունը գտնվում են շատ մեծ չափերով էլիպտիկ գալակտիկաների մերձակայքում։
Քվազարներին համեմատում են տիեզերքի փարոսների հետ։ Նրանք երևում են մեծ հեռավորություններից, նրանցով հետազոտում են տիեզերքի զարգացումն ու կառուցվածքը, որոշում են նյութի բաղադրությունը։
 
== Հատկություններ ==
 
Հայտնի են ավելի քան 200.000 քվազարներ։ Բոլոր դիտարկվող քվազարների սպեկտրների կարմիր շեղումը՝ ալիքի երկարության հարաբերական փոձոխույունը, 0.056-ից 7.085-ի սահմաններում է։ Կիրառելով ՀաբելլիՀաբլի օրենքը կարմիր շեղման այս սահմանների համարհամար՝ կարող ենք ցույց տալ, որ նրանք գտնվում են 600 միլիոնից և 28 բիլլիոնմիլիարդ լուսային տարիներլուսատարի հեռավորությունների վրա։ ՔվազերներիՔվազարների ահռելիմեծ հեռավորության և լույսի արագության վերջավոր լինելու պատճառով մենք տեսնում ենք նրանց և նրանց շրջակա տարածությունը տիեզերքի գոյացություն շատ վաղ ժամանակահատվածում։ Ամենապայծառ քվազարը երկնքում 3C 273 քվազարն է, որը գտնվում է Կույսի համաստեղությունում։ Այս օբյեկտը 33 լուսային տարիլուսատարի հեռավորության վրա երկնքում կփայլեր այնպես, ինչպես մեր Արեգակը։ Հետևաբար այս քվազարի պայծառությունը 2 ճ 1012 անգամ մեծ է, քան մեր արեգակինը։Արեգակինը։ Սակայն սա ճիշտ է այն դեպքում, եթե ենթադրենք, որ այն ճառագայթում է բոլոր ուղղություններով։ուղղություններով, Մինչդեռմինչդեռ ակտիվ գալակտիկաների կորիզը կարելի է նմանեցնել նյութի և էներգիայի հզոր շիթ արտանետող հռթիռի հետ, ուստի այն ճառագայթում է միայն որոշակի ուղղություններով։
 
Քվազարները ավելի տարածված են եղել վաղ տիեզերքում։ Մարտեն Շմիտի այս բացահայտումը, 1967 թվականի սկզբում, հիմնավոր ապացույց էր ընդդեմ Ֆրեդ Հոյլի “Կայուն Վիճակի Տիեզերաբանության” և հավաստում էր Մեծ Պայթյունի գաղափարի վրա հիմնված զարգացող տիեզերքի վարկածը։ Քվազարների ճառագայթման օգնությամբ կարելի է որոշել սև խոռոչների տեղը, որոնք աճում են սեփական գալակտիկայի աստղերի զանգվածի աճին համընթաց, ներկայումս անհասկանալի ճանապարհով։ Կա տեսակետ, որ քվազարից ելնող շիթերը՝ բոցամուղերը, ճառագայթումը և քամիները, արգելում են սեփական գալակտիկայում նոր աստղերի ձևավորմանը։
Քվազարները ավելի տարածված են եղել վաղ տիեզերքում։ Մարտեն Շմիտի այս բացահայտումը, 1967 թվականի սկզբում, հիմնավոր ապացույց էր ընդդեմ Ֆրեդ Հոյլի «Կայուն Վիճակի Տիեզերաբանության» և հավաստում էր Մեծ Պայթյունի գաղափարի հիմքով զարգացող տիեզերքի վարկածը։ Քվազարների ճառագայթման օգնությամբ կարելի է որոշել սև խոռոչների տեղը, որոնք աճում են սեփական գալակտիկայի աստղերի զանգվածի աճին համընթաց, ներկայումս անհասկանալի ճանապարհով։ Կա տեսակետ, որ քվազարից ելնող շիթերը՝ բոցամուղերը, ճառագայթումը և քամիները արգելում են սեփական գալակտիկայում նոր աստղերի ձևավորմանը։ Հայտնաբերվել է, որ տարբեր քվազարների պայծառությունը պարբերաբար փոփոխվում է մի քանի ամիսների, շաբաթների, օրերի և ժամերի ընթացում։ Սա նշանակում է որ քվազարները գեներացնում և ճառագայթում են իրենց էներգիան շատ փոքր տեղամասից։ Այնպես որ քվազարի յուրաքանչյուր մաս պետք է մշտապես կապի մեջ լինի մյուս մասերի հետ,հետ՝ համակարգելով պայծառության տատանումները որոշակի ժամանակային տիրույթում։ Այն քվազարը, որի պայծառությունը տատանվում է մի քանի շաբաթվա ընթացքում, չափերով չի կարող ավելի մեծ լինել մի քանի լուսաին շաբաթներից։ Այսպիսի հզոր ճառագայթումը փոքր տեղամսից պահանջում է ավելի արդյունավետ սնուցման աղբյուր քան միջուկային աստղերը սնող միջուկային ռեակցիանրը։ռեակցիաները։ Գրավիտացիոն փոխազդեցությամբ պայմանավորված նյութի կլանումը զանգվածային սև խոռոչի կողմից միակ հայտնի պրոցեսն է որի ընթացքում կարող է արտամղվել այդպիսի շարունակական բարձր հզորություններ։
 
Քվազարներն օժտված են ակտիվ գալակտիկաների հատկություններով, սակայն ավելի հզոր են։ Նրանց ճառագայթման մասամբ մոտ 10 տոկոսը ոչ ջերմային բնույթի է, սակայն ռադիոգալակտիկաների նման ունեն բոցամուղեր, որոնք կրում են զգալի չափի (բայց քիչ հայտնի) էներգիա, տարածվելով մեծ էներգիայով օժտված մասնիկների տեսքով։ Քվազարներ կարելի է հայտնաբերել էլեկտրամագնիսական ճառագայթման սպեկտրի ողջ տիրույթում, ներառյալ ռադիո, ինֆրակարմիր, օպտիկական, ուլտրամանուշակագույն, ռենգենյանռենտգենյան և անգամ գամմա-ճառագայթման տիրույթները։ Քվազարների մեծամասնությունը հանգիստի համակարգում ճառագայթում են մոտիկ ուլտրամանուշակագույն տիրույթում ¥ ալիքի երկարությունը 1216 անգստրեմին մոտ¤, սակայն այս աղբյուրների ահռելի կարմիրի շեղման պատճառով ճառագայթման ալիքի երկարության գագաթը նկատվում է մոտիկ ինֆրակարմիրի սահմանում՝ 9000 անգստրեմին մոտ։ Քվազարներից շատ քչերըքչերն են հանդես բերում ուժեղ ռադիո ճառաայթումռադիոճառագայթում, որըորն առաջանում է լույսի արագությանը մոտ արագությամբ շարժվող նյութի շիթերից։
Քվազարների կարմիր շեղումը չափվում է առավել պայծառ սպեկտրալ գծերի օգնությամբ, որոնք գերակշռում են օպտիկական և ուլտրամանուշակագույն տիրույթներում։ Այս գծերը ավելի պայծառ են անընդհատ սպեկտրից և այդ պատճառով նրանց անվանվում են ճառագայթման գծեր։ Այս ճառագայթման գծերի հաստությունները Դոպլերյան շեղման արդյունք են և առաջացնում են ճառագայթող գազի լույսի արագությունը մոտ արագությամբ շարժման հետևանքով։ Արագ շարժումը բացահայտում է արտամղվող գազի մեծ զանգվածի առկայությունը։ Ջրածնի, հելիումի, ածխածնի, մագնեզիումի, երկաթի և թթվածնի ճառագայթման գծերը հանդիսանում են ամնեապայծառ գծերը։ Այսպիսի ճառագայթում ապահովող ատոմներ կարող են լինել ինչպես չեզոք, այնպես էլ ուժեղ իոնացված։ Իոնիզացման նման բարձր աստիճանը ցույց է տալիս, որ պրոցեսն ընթացել է քվազարի ճառագայթման ընթացքում։
 
Քվազարների կարմիր շեղումը չափվում է առավել պայծառ սպեկտրալ գծերի օգնությամբ, որոնք գերակշռում են օպտիկական և ուլտրամանուշակագույն տիրույթներում։ Այս գծերը ավելի պայծառ են անընդհատ սպեկտրից, և այդ պատճառով նրանց անվանվում են ճառագայթման գծեր։ Այս ճառագայթման գծերի հաստությունները Դոպլերյան շեղման արդյունք են և առաջացնում են ճառագայթող գազի լույսի արագությունըարագությանը մոտ արագությամբ շարժման հետևանքով։ Արագ շարժումը բացահայտում է արտամղվող գազի մեծ զանգվածի առկայությունը։ Ջրածնի, հելիումի, ածխածնի, մագնեզիումի, երկաթի և թթվածնի ճառագայթման գծերը հանդիսանում են ամնեապայծառամենապայծառ գծերը։ Այսպիսի ճառագայթում ապահովող ատոմներատոմները կարող են լինել ինչպես չեզոք, այնպես էլ ուժեղ իոնացված։ ԻոնիզացմանԻոնացման նման բարձր աստիճանը ցույց է տալիս, որ պրոցեսն ընթացել է քվազարի ճառագայթման ընթացքում։
 
== Գեներացիան և ճառագայթումը ==
Ստացված է «https://hy.wikipedia.org/wiki/Քվազար» էջից