Օհմի օրենք, էլեկտրական շղթայի հիմնական օրենքներից մեկը։ Հոսանքի մեծությունը ուղիղ համեմատական է  հաղորդչի լարմանը  և հակադարձ համեմատական է նրա դիմադրությանը:

                                                                                                           

Հաստատուն  հոսանքի  շղթայում  հաղորդչի  ծայրերում  եղած  պոտենցիալների  տարբերության  և հաղորդչով  անցնող   հոսանքի մեծության միջև  գոյություն ունի  ուղիղ համեմատական  կախում:

որտեղ  I-ն հաղորդչով անցնող հոսանքն է (Ամպեր),   U_ն լարումը (Վոլտ),  իսկ   R_ը հաղորդչի  դիմադրությունն է(համեմատականության գործակից)(Օհմ), և կախված է  հաղորդչի չափերից , ջերմաստիճանից և նյութի տեսակից:

Համեմատականության R գործակիցը կոչվում է օհմական դիմադրություն կամ պարզապես հաղորդիչի տվյալ տեղամասի դիմադրություն։ Հայտնագործել է Գեորգ Օհմը 1826 թ-ին։

Ընդհանուր դեպքում I-ի և U-ի կախումը ոչ գծային է, սակայն գործնականում, լարումների որոշակի միջակայքում այն կարելի է համարել գծային և կիրառել Օհմի օրենքը։ Վերը գրված տեսքով Օհմի օրենքը ճիշտ է շղթայի՝ էլշուի աղբյուրներ չպարունակող տեղամասերի համար։ Այդպիսի աղբյուրների (կուտակիչ գեներատորներ են) առկայության դեպքում Օհմի օրենքն ունի

տեսքը, որտեղ -ն տվյալ տեղամասում պարունակվող բոլոր աղբյուրների էլշուն է։

Օհմի օրենքի ընդհանրացումը ճյուղավորված շղթայի համար Կիրխհոֆի երկրորդ կանոնն է։

Օհմի օրենքը փակ շղթայի համար խմբագրել

Փակ շղթայի համար Օհմի օրենքը ստանում է   տեսքը, որտեղ  -ը շղթայի լրիվ դիմադրությունն է՝ արտաքին R և էլշուի աղբյուրի ներքին Ri դիմադրությունների գումարը։

 
U-լարում
I-հոսանքի ուժ
R-շղթայի դիմադրություն

Հաղորդման հոսանք կոչում են էլեկտրական լիցքեր կրող մասնիկների շարժումը (կարգավորված կամ քաոսային) նյութական մարմինների ներսում էլոկտրական դաշտի ազդեցության տակ։

հ

Օհմի օրենքը դիֆերենցիալ տեսքով խմբագրել

Հաղորդման հոսանք են կոչում էլեկտրական լիցքեր կրող մասնիկների շարժումը (կարգավորված կամ քաոսային) նյութական մարմինների ներսում էլեկտրական դաշտի ազդեցության տակ։

 
Հաղորդման հոսանքը

Նկարից երևում է, որ տվյալ համակարգը լրիվ կբնութագրվի ոչ միայն Ι հոսանքի արժեքով, որ հոսում է արտաքին շղթայով, այլ նաև լիցքավորված մասնիկների շարժման ուղղության և ինտենսիվության տվյալներով տարածքի ամեն կետում։

Այդ նպատակով ներմուծենք նոր հասկացություն` հաղորդման հոսանքի խտությունը.

 

որտեղ N-ը 1 մ   նյութում լիցքը կրող մասնիկների թիվն է

e - ն`լիցքը,

V - ն` կրողների արագությունը տվյալ կետում

  Ա/մ  

  - կրող մասնիկների արագության վեկտորին ուղղահայաց միավոր հարթության միջով անցնող հոսանքի չափն է։

Մասնիկների արագությունը, հետևաբար և հաղորդման հոսանքի խտությունը, ուղիղ համեմատական է էլեկտրական դաշտի լարվածությանը.

  (1)

ուր  -ն ինչ-որ մի չափ ունեցող հաստատուն է։

Ապացուցենք, որ (1)-ը Օհմի գրառման տեսքերից մեկն է։

 
Օհմի օրենքը

Այդ նպատակով դիտարկենք   կողով մի խորանարդ։ Ենթադրենք նաև, որ երկու հակադիր նիստերը մետաղացված են, և նրանց վրա U պոտենցիալի մեծության տարբերություն կա։ Այսինքն, շղթայով կհոսի I հոսանք։

 ,  

Օգտագործելով (1)` կստանանք`

 

Ընդունենք`  ,

որտեղ R-ը նիստերի միջև եղած դիմադրությունն է։

(1) բանաձևը կոչվում է Օհմի օրենք դիֆերենցիալ տեսքով, քանի որ ներկայացնում է հաղորդման հոսանքի խտության և էլեկտրական դաշտի լարվածության կապը տարածության ցանկացած կետի անվերջ փոքր մոտակայքում։

Պարզ է, որ   գործակիցը Սիմ/մ չափ ունի։ Այն կոչվում է տեսակարար ծավալային հաղորդականություն և բնութագրում է նյութի հաղորդիչ հատկությունները։

Մետաղ   Սիմ/մ
Արծաթ 6,1
Պղինձ 5,7
Ալյումին 3,2

Այսպիսով, մետաղի մակերեսին բավականին մեծ հոսանքի ստեղծման համար բավական է էլեկտրական դաշտի լարվածության չնչին մեծության առկայությունը։ Դիէլեկտրիկների և կիսահաղորդիչների տեսակարար ծավալային հաղորդականությունը շատ ավելի փոքր է, քան մետաղներում։ Այդ պատճառով հարմար է այդ նյութերի էլեկտրահաղորդականությունը արտահայտել այլ մեծությամբ - դիէլեկտրիկ կորուստների անկյան միջոցով։

Օհմի օրենքը կարելի է գրել դիֆերենցիալ տեսքով՝

 

կամ

 ,

որտեղ  հոսանքի խտությունն է, ρ-ն՝ հաղորդչի տեսակարար դիմադրությունը, σ=1/ρ-ն՝ տեսակարար էլեկտրահաղորդականությունը,  -ն՝ պոտենցիալ էլեկտրական դաշտի լարվածությունը,  -ն՝ ոչ էլեկտրաստատիկ բնույթի ուժերի (ինդուկցիոն, քիմիական, ջերմային ևն) ստեղծված կողմնակի դաշտի լարվածությունը։

Օհմի օրենքը կոմպլեքս տեսքով ճիշտ է նաև սինուսարդային քվազիստացիոնար հոսանքների համար.

 ,

որտեղ  -ը լրիվ կոմպլեքս դիմադրությունն է (R-ը շղթայի ակտիվ դիմադրությունն է, x-ը ռեակտիվ դիմադրությունը)։