«Մասնակից:Dminasyan/Ավազարկղ-մաթ»–ի խմբագրումների տարբերություն

չ
\end{vmatrix}</math>
(համակարգի մատրիցայի <math>i</math>-րդ սյունը փոխարինվում է ազատ անդամների սյունքվ)։
 
Մեկ այլ ձևով Կրամերի կանոնը ձևակերպվում է հետևյալ տեսքով՝ ցանկացած c<sub>1</sub>, c<sub>2</sub>, …, c<sub>n</sub> գործակիցների համար իրավացի է հետևյալ հավասարությունը՝
: <math>(c_1x_1+c_2x_2+\dots+c_nx_n)\cdot\Delta = -\begin{vmatrix}
\end{vmatrix}</math>
 
Այս ձևով Կրամերի մեթոդը իրավացի է առանց ենթադրության, որ <math>\Delta</math> զրոյից տարբեր է, նույնիսկ անհրաժեշտ չէ, որ համակարգի գործակիցները լինեն ամբողջական շրջանիօղակի էլեմենտներ (համակարգի որոշիչը կարող է լինել նույնիսկ գործակիցների շրջանումօղակում զրոյի բաժանարար)։ Կարելի է նույնիսկ ընդունել, որ <math>b_1,b_2,...,b_n</math> և <math>x_1,x_2,...,x_n</math>, կամ <math>c_1,c_2,...,c_n</math> կազմված են ոչ թե համակարգի գործակիցների շրջանիօղակի էլեմենտներից, այլ այդ շրջանիօղակի ինչ որ մոդուլը։ Այս տեսքով Կրամերի բանաձևը օգտագործվում է, օրինակ, [[Գրամի որոշիչ]]ի և [[Նակայամայի լեմմա]]յի բանաձևերի ապացուցման համար։
 
== Օրինակ ==
2464

edits