«Իդեալական գազի վիճակի հավասարում»–ի խմբագրումների տարբերություն

Content deleted Content added
Տող 26.
 
Մենդելեևը հայտնաբերեց, որ <math>r</math>-ը ուղիղ համեմատական է <math>\nu</math>-ին և համեմատականության գործակից <math>R</math>-ը անվանեց '''ունիվերսալ գազային հաստատուն։'''
== Թերմոդինամիկական պրոցեսների աղյուսակ ==
The table below essentially simplifies the ideal gas equation for a particular processes, thus making this equation easier to solve using numerical methods.
 
A [[thermodynamic process]] is defined as a system that moves from state 1 to state 2, where the state number is denoted by subscript. As shown in the first column of the table, basic thermodynamic processes are defined such that one of the gas properties (''P'', ''V'', ''T'', ''S'', or ''H'') is constant throughout the process.
 
For a given thermodynamics process, in order to specify the extent of a particular process, one of the properties ratios (which are listed under the column labeled "known ratio") must be specified (either directly or indirectly). Also, the property for which the ratio is known must be distinct from the property held constant in the previous column (otherwise the ratio would be unity, and not enough information would be available to simplify the gas law equation).
 
In the final three columns, the properties (''P'', ''V'', or ''T'') at state 2 can be calculated from the properties at state 1 using the equations listed.
 
{| class="wikitable"
|-
! Process
! Constant
! Known ratio or delta
! P<sub>2</sub>
! V<sub>2</sub>
! T<sub>2</sub>
|-
|rowspan="2"|[[Isobaric process]]
|rowspan="2"| <center>Pressure</center>
| <center>V<sub>2</sub>/V<sub>1</sub></center>
| P<sub>2</sub> = P<sub>1</sub>
| V<sub>2</sub> = V<sub>1</sub>(V<sub>2</sub>/V<sub>1</sub>)
| T<sub>2</sub> = T<sub>1</sub>(V<sub>2</sub>/V<sub>1</sub>)
|-
| <center>T<sub>2</sub>/T<sub>1</sub></center>
| P<sub>2</sub> = P<sub>1</sub>
| V<sub>2</sub> = V<sub>1</sub>(T<sub>2</sub>/T<sub>1</sub>)
| T<sub>2</sub> = T<sub>1</sub>(T<sub>2</sub>/T<sub>1</sub>)
|-
|rowspan="2"| [[Isochoric process]]<br>(Isovolumetric process)<br>(Isometric process)
|rowspan="2"| <center>Volume</center>
| <center>P<sub>2</sub>/P<sub>1</sub></center>
| P<sub>2</sub> = P<sub>1</sub>(P<sub>2</sub>/P<sub>1</sub>)
| V<sub>2</sub> = V<sub>1</sub>
| T<sub>2</sub> = T<sub>1</sub>(P<sub>2</sub>/P<sub>1</sub>)
|-
| <center>T<sub>2</sub>/T<sub>1</sub></center>
| P<sub>2</sub> = P<sub>1</sub>(T<sub>2</sub>/T<sub>1</sub>)
| V<sub>2</sub> = V<sub>1</sub>
| T<sub>2</sub> = T<sub>1</sub>(T<sub>2</sub>/T<sub>1</sub>)
|-
|rowspan="2"| [[Isothermal process]]
|rowspan="2"| <center>&nbsp;Temperature&nbsp;</center>
| <center>P<sub>2</sub>/P<sub>1</sub></center>
| P<sub>2</sub> = P<sub>1</sub>(P<sub>2</sub>/P<sub>1</sub>)
| V<sub>2</sub> = V<sub>1</sub>/(P<sub>2</sub>/P<sub>1</sub>)
| T<sub>2</sub> = T<sub>1</sub>
|-
| <center>V<sub>2</sub>/V<sub>1</sub></center>
| P<sub>2</sub> = P<sub>1</sub>/(V<sub>2</sub>/V<sub>1</sub>)
| V<sub>2</sub> = V<sub>1</sub>(V<sub>2</sub>/V<sub>1</sub>)
| T<sub>2</sub> = T<sub>1</sub>
|-
|rowspan="3"| [[Isentropic process]]<br>(Reversible [[adiabatic process]])
|rowspan="3"| <center>[[Entropy]]{{ref_label|A|a|none}}</center>
| <center>P<sub>2</sub>/P<sub>1</sub></center>
| P<sub>2</sub> = P<sub>1</sub>(P<sub>2</sub>/P<sub>1</sub>)
| V<sub>2</sub> = V<sub>1</sub>(P<sub>2</sub>/P<sub>1</sub>)<sup>(−1/γ)</sup>
| T<sub>2</sub> = T<sub>1</sub>(P<sub>2</sub>/P<sub>1</sub>)<sup>(γ − 1)/γ</sup>
|-
| <center>V<sub>2</sub>/V<sub>1</sub></center>
| P<sub>2</sub> = P<sub>1</sub>(V<sub>2</sub>/V<sub>1</sub>)<sup>−γ</sup>
| V<sub>2</sub> = V<sub>1</sub>(V<sub>2</sub>/V<sub>1</sub>)
| T<sub>2</sub> = T<sub>1</sub>(V<sub>2</sub>/V<sub>1</sub>)<sup>(1 − γ)</sup>
|-
| <center>T<sub>2</sub>/T<sub>1</sub></center>
| P<sub>2</sub> = P<sub>1</sub>(T<sub>2</sub>/T<sub>1</sub>)<sup>γ/(γ − 1)</sup>
| V<sub>2</sub> = V<sub>1</sub>(T<sub>2</sub>/T<sub>1</sub>)<sup>1/(1 − γ) </sup>
| T<sub>2</sub> = T<sub>1</sub>(T<sub>2</sub>/T<sub>1</sub>)
|-
|rowspan="3"| [[Polytropic process]]<br>
|rowspan="3"| <center>P V<sup>n</sup></center>
| <center>P<sub>2</sub>/P<sub>1</sub></center>
| P<sub>2</sub> = P<sub>1</sub>(P<sub>2</sub>/P<sub>1</sub>)
| V<sub>2</sub> = V<sub>1</sub>(P<sub>2</sub>/P<sub>1</sub>)<sup>(-1/n)</sup>
| T<sub>2</sub> = T<sub>1</sub>(P<sub>2</sub>/P<sub>1</sub>)<sup>(n − 1)/n</sup>
|-
| <center>V<sub>2</sub>/V<sub>1</sub></center>
| P<sub>2</sub> = P<sub>1</sub>(V<sub>2</sub>/V<sub>1</sub>)<sup>−n</sup>
| V<sub>2</sub> = V<sub>1</sub>(V<sub>2</sub>/V<sub>1</sub>)
| T<sub>2</sub> = T<sub>1</sub>(V<sub>2</sub>/V<sub>1</sub>)<sup>(1 − n)</sup>
|-
| <center>T<sub>2</sub>/T<sub>1</sub></center>
| P<sub>2</sub> = P<sub>1</sub>(T<sub>2</sub>/T<sub>1</sub>)<sup>n/(n − 1)</sup>
| V<sub>2</sub> = V<sub>1</sub>(T<sub>2</sub>/T<sub>1</sub>)<sup>1/(1 − n) </sup>
| T<sub>2</sub> = T<sub>1</sub>(T<sub>2</sub>/T<sub>1</sub>)
|-
|rowspan="3"| [[Isenthalpic process]]<br>(Irreversible [[adiabatic process]])
|rowspan="3"| <center>[[Enthalpy]]{{ref_label|B|b|none}}</center>
| <center>P<sub>2</sub> − P<sub>1</sub></center>
| P<sub>2</sub> = P<sub>1</sub> + (P<sub>2</sub> − P<sub>1</sub>)
|
| T<sub>2</sub> = T<sub>1</sub> + μ<sub>JT</sub>(P<sub>2</sub> − P<sub>1</sub>)
|-
| <center>T<sub>2</sub> − T<sub>1</sub></center>
| P<sub>2</sub> = P<sub>1</sub> + (T<sub>2</sub> − T<sub>1</sub>)/μ<sub>JT</sub>
|
| T<sub>2</sub> = T<sub>1</sub> + (T<sub>2</sub> − T<sub>1</sub>)
|}
 
{{Note_label|A|a|none}} '''a.''' In an isentropic process, system [[entropy]] (''S'') is constant. Under these conditions, ''P''<sub>1</sub> ''V''<sub>1</sub><sup>''γ''</sup> = ''P''<sub>2</sub> ''V''<sub>2</sub><sup>''γ''</sup>, where ''γ'' is defined as the [[heat capacity ratio]], which is constant for a calorifically [[perfect gas]]. The value used for ''γ'' is typically 1.4 for diatomic gases like [[nitrogen]] (N<sub>2</sub>) and [[oxygen]] (O<sub>2</sub>), (and air, which is 99% diatomic). Also ''γ'' is typically 1.6 for mono atomic gases like the [[noble gas]]es [[helium]] (He), and [[argon]] (Ar). In internal combustion engines ''γ'' varies between 1.35 and 1.15, depending on constitution gases and temperature.
 
{{Note_label|B|b|none}} '''b.''' In an isenthalpic process, system [[enthalpy]] (''H'') is constant. In the case of [[free expansion]] for an ideal gas, there are no molecular interactions, and the temperature remains constant. For real gasses, the molecules do interact via attraction or repulsion depending on temperature and pressure, and heating or cooling does occur. This is known as the [[Joule–Thomson effect]]. For reference, the Joule–Thomson coefficient μ<sub>JT</sub> for air at room temperature and sea level is 0.22&nbsp;°C/[[bar (unit)|bar]].<ref>{{Cite journal| pmc=1084398|title= The Joule-Thomson Effect in Air|journal= Proceedings of the National Academy of Sciences of the United States of America|volume= 12|issue= 1|pages= 55–58|author= J. R. Roebuck|year= 1926|bibcode= 1926PNAS...12...55R|doi= 10.1073/pnas.12.1.55|pmid=16576959}}</ref>
 
== Կապ իդեալական գազի վիճակի մյուս հավասարումների հետ ==