«Բետա-տրոհում»–ի խմբագրումների տարբերություն

չ
Բոտ: կոսմետիկ փոփոխություններ
Պիտակ: Խմբագրում բջջային սարքով Խմբագրում կայքի բջջային տարբերակից
չ (Բոտ: կոսմետիկ փոփոխություններ)
 
'''Բետա-տրոհում''' ({{math|β}}-տրոհում), [[թույլ փոխազդեցություն|թույլ փոխազդեցությամբ]] պայմանավորված ռադիոակտիվ տրոհում, որի արդյունքում միջուկի լիցքը փոխվում է մեկով՝ առանց [[զանգվածային թիվ|զանգվածային թվի]] փոփոխության։ Տրոհման ժամանակ [[միջուկ (ատոմ)|միջուկը]] բետա-մասնիկ ճառագայթում է([[էլեկտրոն]] կամ [[պոզիտրոն]]), ինչպես նաև կիսաամբողջ [[սպին]]ով չեզոք հիմնարար մասնիկ (համապատասխանաբար էլեկտրոնային հականեյտրոն կամ [[էլեկտրոնային նեյտրոն]])։ Եթե տրոհումը տեղի է ունենում էլեկտրոնի և հականեյտրոնի ճառագայթմամբ, այն կոչվում է «բետա-մինուս տրոհում» ({{math|β<sup>−</sup>}}), եթե պոզիտրոնի և նեյտրոնի ճառագայթումով՝ «բետա-պլյուս տրոհում» ({{math|β<sup>+</sup>}})։
Բացի {{math|β<sup>−</sup>}} և {{math|β<sup>+</sup>}} տրոհումներից, բետա-տրոհումներին է դասվում նաև [[էլեկտրոնի զավթում]]ը, երբ միջուկը «զավթում է» ատոմի էլեկտրոնը և ճառագայթում է էլեկտրոնային նեյտրոն։ Ի տարբերություն էլեկտրոնի և պոզիտրոնի, նեյտրոնը (հականեյտրոնը) շատ թույլ է փոխազդում նյութի հետ և հեռանում է՝ տանելով տրոհման ժամանակ անջատվող էներգիայի մի մասը․
 
Բետա տրոհման երկու ձև կա՝ β<sup>−</sup> (բետա մինուս) և β<sup>+</sup> (բետա պլյուս) տրոհումները, որոնց ընթացքում առաջանում են համապատասխանաբար էլեկտրոններ և պոզիտրոններ։ Բետա պլյուս տրոհումը կոչվում է նաև ''պոզիտրոնային տրոհում'' (պոզիտրոնային էմիսիա)։
 
Եթե պրոտոնը և նեյտրոնը ատոմի միջուկի մաս են, բետա-տրոհման պրացեսները մի քիմիական տարրը վերածում են մյուսի՝ [[պարբերական աղյուսակ]]ում հարևան տարրի։ Օրինակ՝
: <math>\mathrm{{}^1{}^{37}_{55}Cs}\rightarrow\mathrm{{}^1{}^{37}_{56}Ba}+ e^- + \bar{\nu}_e</math> (<math>\beta^-</math>-տրոհում),
 
: <math>\mathrm{~^{22}_{11}Na}\rightarrow\mathrm{~^{22}_{10}Ne} + e^+ + {\nu}_e</math> (<math>\beta^+</math>-տրոհում),
 
: <math>\mathrm{~^{22}_{11}Na} + e^- \rightarrow\mathrm{~^{22}_{10}Ne} + {\nu}_e</math> (էլեկտրոնի զավթում)։
 
Բետա-տրոհումը չի փոխում {{math|''A''}} միջուկում [[նուկլոն]]ների թիվը, սակայն փոխում է միջուկի {{math|''Z''}} [[էլեկտրական լիցք]]ը (ինչպես նաև {{math|''N''}} նեյտրոնների թիվը)։ Այսպիսով, կարելի է ներմուծել բոլոր նուկլիդների հավաքածուն միևնույն {{math|''A''}}-ով, սակայն տարբեր {{math|''Z''}}-ով և {{math|''N''}}-ով (իզոբար շղթա). այս ''[[իզոբար]]ային'' նուկլիդները բետա-տրոհման ժամանակ կարող են հաջորդաբար փոխակերպվել մեկը մյուսին։ Դրանց մեջ որոշ նուկլիդներ (գոնե մեկը) բետա-կայուն են, քանի որ դրանք իրենցից ներկայացնում են [[զանգվածի դեֆեկտ|զանգվածի ավելցուկավելցուկի]]ի լոկալ մինիմումներ. եթե նման միջուկն ունի {{math|(''A'', ''Z'')}} թվեր, հարևան միջուկները՝ {{math|(''A'', ''Z'' − 1)}} և {{math|(''A'', ''Z'' + 1)}} ունեն զանգվածի մեծ ավելցուկ և կարող են տրոհվել բետա-տրոհման միջոցով {{math|(''A'', ''Z'')}}-ի, բայց ոչ հակառակը։ Անհրաժեշտ է նշել, որ բետա-կայուն միջուկը կարող է ենթարկվել այլ տիպի ռադիոակտիվ տրոհումների, [[ալֆա-տրոհում|ալֆա-տրոհման]], օրինակ։ Բնական պայմաններում Երկրի վրա գոյություն ունեցող իզոտոպների մեծ մասը բետա-կայուն է, սակայն գոյություն ունեն մի քանի բացառություններ այնքան մեծ [[կիսատրոհման պարբերություն|կիսատրոհման պարբերությամբ]], որ չեն հասցնի անհետանալ մոտ {{nobr|4, 5 միլիարդ տարում}}՝ նուկլեոսինթեզի պահից հաշված։ Օրինակ, <sup>40</sup>K-ը, որ ենթարկվում է բոլոր երեք տիպի բետա-տրոհումների (բետա-մինուս, բետա-պլյուս և էլեկտրոնի զավթում) ունի 1, 277{{e|9}} տարի կիսատրոհման պարբերություն։
 
Բետա-տրոհումը կարելի է դիտարկել որպես գրգռումով պայմանավորված անցում երկու քվանտամեխանիկական վիճակների միջև, այդ պատճառով այն ենթարկվում է [[Ֆերմիի ոսկե կանոն]]ին։
[[Հիմնարար մասնիկ|Հիմնարար]] մակարդակում (ցույց է տված [[Ֆեյնմանի դիագրամ]]ում) այն պայմանավորված է [[d-քվարկ]]ի վերածումով [[u-քվարկ]]ի՝ [[վիրտուալ մասնիկներ|վիրտուալ]] {{math|''W''<sup>−</sup>}}-բոզոնի ճառագայթումով, որն, իր հերթին, տրոհվում է էլեկտրոնի և հայանեյտրինոյի։
 
Ազատ նեյտրոնը նույնպես ենթարկվում է {{math|β<sup>−</sup>}}-տրոհման։ Դա պայմանավորված է այն հանգամանքով, որ նեյտրոնի զանգվածն ավելի է, քան պրոտոնի, էլեկտրոնի և հականեյտրինոյի գումարային զանգվածը։ Միջուկում կապված նեյտրոնը կարող է այդ կերպ տրոհվել միայն այն դեպքում, եթե մայր ատոմի {{math|''M<sub>i</sub>''}} զանգվածը մեծ է դուստր ատոմի {{math|''M<sub>f</sub>''}} զանգվածից (կամ, ընդհանուր դեպքում, եթե սկզբնական վիճակի լրիվ էներգիան մեծ է ցանկացած հնարավոր վերջնական վիճակի լրիվ էներգիայից)<ref>Օրինակ, [[դեյտերիում]]ը, որի միջուկը կազմված է պրոտոնից և նեյտրոնից, բետա-կայուն է. նրա նեյտրոնը ինքնակամ չի կարող տրոհվել պրոտոն+էլեկտրոն+հականեյտրինոյի, քանի որ ցանկացած հնարավոր վերջնական վիճակների էներգիան ավելի մեծ է, քան դեյտերիումի ատոմի էներգիան։</ref>։ {{math|(''M<sub>i</sub> − M<sub>f</sub>'')·''[[լոիյսի արագություն|c]]''<sup>2</sup> {{=}} ''Q''<sub>β</sub>}} տարբերությունը կոչվում է բետա-տրոհման ''մատչելի էներգիա'' <!-- todo ստուգել հայերեն տերմինի թարգմանությունը доступной энергией -->։ Այն թվապես հավասար է տրոհումից հետո շարժվող մասնիկների՝ էլեկտրոնի, հականեյտրինոյի և դուստր միջուկի (այսպես կոչված հետհրման միջուկը, որի բաժինը տարվող կինետիկ էներգիայի ընդհանուր հաշվեկշռում շատ քիչ է, քանի որ այն էապես ծանր է մյուս երկու մասնիկներից) գումարային կինետիկ էներգիային։ Եթե անտեսենք դուստր միջուկի ներդրումը, ապա բետա-տրոհման ժամանակ անջատվող մատչելի էներգիան կինետիկ էներգիայի տեսքով բաշխվում է էլեկտրոնի և հականեյտրինոյի միջև, ընդ որում այն բաշխումն անընդհատ է. այդ երկու մասնիկներից յուրաքանչյուրը կարող է ունենալ 0-ից մինչև {{math|''Q''<sub>β</sub>}} էներգիա։ [[Էներգիայի պահպանման օրենք]]ը թույլ է տալիս {{math|β<sup>−</sup>}}-տրոհումը միայն ոչ բացասական {{math|''Q''<sub>β</sub>}} դեպքում։
 
{{math|β<sup>−</sup>}}-տրոհման ժամանակ դուստր ատոմը սովորաբար առաջանում է լիցքավորված դրական իոնի տեսքով, քանի որ միջուկը մեծացնում է իր լիցքը մեկով, իսկ էլեկտրոնների քանակը թաղանթում նույնն է մնում։ Այդպիսի իոնի էլեկտրոնային թաղանթի կայուն վիճակը կարող է տարբերվել մայր ատոմի թաղանթի վիճակից, այդ պատճառով տրոհումից հետո տեղի է ունենում էլեկտրոնային թաղանթի վերադասավորում։ Բացի այդ, հնարավոր է բետա-տրոհում կապված վիճակում, երբ միջուկից դուրս թռած փոքր էներգիայով էլեկտրոնը զավթում է թաղանթի ուղեծրերից մեկը. այս դեպքում դուստր ատոմը չեզոք է մնում։
275 380

edits