40
edits
Երկու կոտորակերի բազմապատկում նշանակում է առաջին կոտորակի համարիչն ու հայտարարը համապատասխանաբար բազմապատկել մյուս կոտորակի համարիչով և հայտարարով:
Օրինակ՝
Օրինակ՝<math>\tfrac{3}{4}</math><math>\times</math><math>\tfrac{5}{6}</math><math>=</math><math>\tfrac{3\times5}{4\times6}</math><math>=</math><math>\tfrac{15}{24}</math>▼
▲
Արդյունքում կարող են համարիչն ու հայտարարը ունենալ ընդհանուր բաժանարար: Անհրաժեշտ է արդեն ստացված կոտորակի և համարչը և հայտարարը բաժանել այդ ընդհանուր բաժանարարին և այս դեպքում կստանանք՝ <math>\tfrac{15\div3}{24\div3}</math><math>=</math><math>\tfrac{3}{8}</math>▼
▲Արդյունքում կարող են համարիչն ու հայտարարը ունենալ ընդհանուր բաժանարար: Անհրաժեշտ է արդեն ստացված կոտորակի և համարչը և հայտարարը բաժանել այդ ընդհանուր բաժանարարին և այս դեպքում կստանանք՝
<math>\tfrac{15\div3}{24\div3}</math><math>=</math><math>\tfrac{3}{8}</math>
=== Կոտորակների բաժանում ===
Երկու կոտորակների բաժանման դեպքում առաջին կոտորակի համարչը բազմապատկում ենք և արդյունքը գրում ստացվող կոտորակի համարիչում իսկ հայտարարը բազմապատկում երկրորդ կոտորակի համարիչին և գրում ստացվող կոտորակի հայտարարում: Այլ կերպ կարելի ներկայացնել այսպես. առաջին կոտորակը գրում ենք նույնությաբ, բաժանումը փոխարինում բազմապատկմամբ, իսկ երկորդ կոտորակի համարիչի և հայտարարի թվերի դիրքը փոխում:
Օրինակ՝
Օրինակ՝ <math>\tfrac{3}{4}</math><math>\div</math><math>\tfrac{5}{6}</math><math>=</math><math>\tfrac{3}{4}</math><math>\times</math><math>\tfrac{6}{5}</math><math>=</math><math>\tfrac{3\times6}{4\times5}</math><math>=</math><math>\tfrac{18}{20}</math>▼
▲
Ընդ որում <math>\tfrac{18}{20}</math> կոտորակը կարելի է կրճատել, քանի որ համարիչի և հայտարարի ամենամեծ ընդհանուր բաժանարարը 2-ն է, ապա կարելի է գրել.
|
edits