«Արհեստական նեյրոնային ցանց»–ի խմբագրումների տարբերություն

չ
փոխարինվեց: ն : → ն։ (106) oգտվելով ԱՎԲ
չ (փոխարինվեց: ն : → ն։ (106) oգտվելով ԱՎԲ)
[[Պատկեր:Neuralnetwork.png|մինի|Պարզ նեյրոնային ցանցի սխեմա։Կանաչ գույնով նշանակված են ''մուտքային'' նեյրոնները , երկնագույնով` ''թաքնված'' նեյրոնները, դեղինով`  ''ելքային'' նեյրոնը]]
 
'''Արհեստական նեյրոնային ցանցեր''' (ԱՆՑ), [[մաթեմատիկական մոդել]]ներ, ինչպես նաև նրանց ծրագրային կամ սարքային իրականացումներ, որոնք կառուցված են [[բիոլոգիական նեյրոնային ցանց]]երի - ցանցեր կենդանի օրգանիզմի [[նեյրոն|նեյրոնային բջիջներից]] կազակերպական կամ ֆունկցիայավորման սկզբունքով։ Այդ հասկացությունը առաջացել է [[գլխուղեղ]]-ում առաջացող պրոցեսների ուսումնասիրման և այդ պրոցեսների [[Մոդելավորում|մոդելավորման]] փորձերի արդյունքում։ Այդպիսի առաջին [[Ուղեղի մոդել|փորձը]] [[Մակկալոկ, Ուորեն|Մակկալոկի]]և [[Պիթս, Ուոլտեր|Պիթսի]] նեյրոնային ցանցերն էին <ref name="Մակ-Կալլոկ">''Մակ-Կալլոկ Ու. Ս., Պիթս Վ.'',[http://neuro.net.ua/pub/mcculloch.html Գաղափարների տրամաբանական հաշվարկ, որոնք վերաբերում են նյարդային ակտիվությանը ] // «Սարքավորումներ» ժողովածու Կ. Է. Շեննոնի և Ջ. Մակկարտիի խմբագրությամբ։ Արտասահմանյան գրականության խմբագրություն , 1956. — էջ.363-384. (Անգլիական հոդվածի թարգմանություն 1943 թ.)</ref>. Հետագայում, ուսուցողական ալգորիթմների մշակումից հետո, ստացված մոդելները սկսեցին կիրառել պրակտիկ նպատակներով ` [[կանխատեսման խնդիրներ]]ում, [[Կերպարների ճանաչում|կերպարների ճանաչման]] համար, [[Ադապտիվ կառավարում|կառավարման]] խնդիրներում և այլն :այլն։
 
ԱՆՑ-ն իրենից ներկայացնում է փոխկապված և փոխհամագործակցող ([[արհեստական նեյրոն]]ների) պարզ [[պրոցեսորների]] [[համակարգ]]:Այդպիսի պրոցեսորները սովորաբար բավականին պարզ են, հատկապես, համեմատած անհատական համակարգիչներում կիրառվող պրոցեսորների հետ։ Նմանատիպ ցանցի յուրաքանչյուր պրոցեսոր գործ ունի միայն [[ազդանշանների]] հետ, որոնք պարբերականորեն ստանում է, և ազդանշանների, որոնք պարբերաբար ուղարկում է այլ պրոցեսորների։ Այնուամենայնիվ, այդպիսի լոկալ պարզ պրոցեսորները միասին ընդունակ են կատարելու բավականին բարդ խնդիրներ։
 
[[Մեքենայական ուսուցում|Մեքենայական ուսուցման]] տեսանկյունից նեյրոնային ցանցը իրենից ներկայացնում է [[Կերպարների ճանաչում (կիբեռնետիկա)|կերպարների ճանաչման]], [[Դիսկրիմինանտ վերլություն|դիսկրիմինանտ վերլուծության]], [[Կլաստերիզացիա|կլաստերիզացիայի մեթոդի]] և նմանատիպ այլ մեթոդների մասնավոր դեպք։ [[Մաթեմատիկա]]կան տեսանկյունից , նեյրոնային ցանցերի ուսուցումը [[ոչ գծային օպտիմալացում|ոչ գծային]] [[Օպտիմիզացիա (մաթեմատիկա)|օպտիմալացման]] [[բազմապարամետրական խնդիր]] է։ [[Կիբեռնետիկա]]յի տեսանկյունից նեյրոնային ցանցը կիրառվում է [[Ադապտիվ կառավարում|ադապտիվ կառավարման]] խնդիրներում և որպես [[ալգորիթմներ]] [[ռոբոտատեխնիկա]]յի համար։ [[Հաշվողական տեխնիկա]]յի և [[ծրագրավորում|ծրագրավորման]] զարգացման տեսակյունից նեյրոնային ցանցը [[պարալելիզմի արդյունավետ կառավարում|արդյունավետ պարալելիզմի խնդիրների]] լուծման միջոց է :է։ [[Արհեստական ինտելեկտ]]ի տեսանկյունից ԱՆՑ-ն հանդիսանում է [[կոննեկտիվիզմի]] հոսքի [[փիլիսոփայություն|փիլիսոփայական]] հիմքը և [[կառուցվածքային մոտեցում|կառուցվածքային մոտեցման]] հիմնական ուղղությունը [[համակարգչային ալգորիթմ|համակարգչային]] [[ալգորիթմների]] միջոցով (մոդելավորում) [[ինտելեկտ|բնական ինտելեկտի]] կառուցման հնարավորությունների ուսումնասիրումը։
 
Նեյրոնային ցանցերը չեն [[ծրագրավորում|ծրագրավորվում]] բառից բուն իմաստով, դրանք '''[[ուսուցում|ուսուցանվում են]]'''. ուսուցանելու հնարավորությունը նեյրոնային ցանցերի գլխավոր առանձնահատկություններից է ավանդական [[ալգորիթմների]] առջև։ Տեխնիկապես ուսուցումը կայանում է նեյրոնների միջև կապերի գործակիցների առկայությամբ։ Ուսուցման պրոցեսում նեյրոնային ցանցը ունակ է հայտնաբերել մուտքային և ելքային տվյալների միջև բարդ կախվածություններ, ինչպես նաև կատարել [[ընդհանրացում]]: Դա նշանակում է, որ հաջող ուսուցման դեպքում ցանցը կարող է վերադարձնել ճիշտ արդյունք այն տվյալների հիման վրա, որոնք բացակայում էին ուսուցողական ընտրանքում, ինչպես նաև ոչ լիարժեք և/կամ «աղմկոտ», մասամբ աղավաղված տվյալների հիման վրա։
* [[1948 թ. գիտությունում|1948]] - [[Վիներ , Նորբերտ|Նորբերտ Վիներ]]ը գործընկերների հետ միասին հրատարակեցին կիբերնետիկայի մասին աշխատանքը։ Հիմնական գաղափարը հանդիսանում է մաթեմատիկական մոդելների միջոցով բարդ բիոլոգիական պրոցեսների ներկայացումը։
* [[1949 թ. գիտությունում|1949]] - [[Խեբբ,Դոնալդ|Դ. Խեբբը]] առաջարկում է ուսուցման առաջին ալգորիթը։
* [[1958 թ. գիտությունում|1958]] [[Ռոզենբատտ, Ֆռենկ|Ֆ. Ռոզենբատտ]]ը ստեղծում է միաշերտ [[Պերսեպտրոն]]։ Պերցեպտրոնը ոընի որոշակի առանձնահատկություն ` այն կիրառում է կերպարների ճանաչման , եղանակի կանխատեսման և այլ խնդիրներում :խնդիրներում։ Թվում էր, թե ամբողջական [[արհեստական ինտելեկտ]]ի կառուցումը այլևս սարերի ետևում չէ։ Մակկալոկը և նրա հետնորդները դուրս եկան «Կիբերնետիկական ակումբից»։
* [[1960 թ. գիտությունում|1960 թ.-ին]] {{Translation|:en:Widrow |Ուիդրոուն}}Ուիդրոուն իր ուսանող Խոֆֆոմի հետ համատեղ [[դելտա-կանոն]]ի հիման վրա (''Ուիդրոուի բանաձևեր'') մշակեցին Ադալինը, որը անմիջապես սկսեց կիրառվել կանխատեսման և արդյունավետ կառավարման խնդիրներում։ Ադալինը կառուցվել էր նրանց (Ուիդրոու - Խոֆֆոմ) իսկ կողմից արդեն ստեղծված սկուզբունքորեն նոր էլեմենտների բազայի հիման վրա՝ [[մեմիստոր]]ի հիման վրա <ref>[http://www-isl.stanford.edu/~widrow/papers/j1964patternrecognition.pdf Pattern Recognition and Adaptive Control. ''BERNARD WIDROW'']</ref>. Այժմ Ադալինը հանդիսանում է ազդանշանների մշակման բազմաթիվ համակարգերի ստանդարտ էլեմենտը։<ref>''Ուիդրոու Վ., Ստիրնս Ս.'',Ազդանշանների արդյունավետ կառավարում :կառավարում։ Ռադիո և կապ, 1989. — 440 էջ</ref>
*[[1963 թ. գիտությունում|1963 թ.-ին]] АН СССР Ինֆորմացիայի փոխանցման խնդիրների ինստիտուտում Ա. Պ. Պետրովի կողմից կատարվում է պերցեպտրոնի համար «բարդ» խնդիրների մանրակրկիտ ուսումնասիրություն <ref>{{հոդված | հեղինակ = Պետրով Ա.Պ. | վերնագիր = Պերցեպտրոնի հնարավորությունների մասին| հրատարակություն = АН СССР հրատարակություն, Տեխնիկական կիբերնետիկա | թիվ = 1964 | համար = 6 }}</ref>. ԱՆՑ մոդելավորման ոլորտում այդ պիոներական աշխատանքը ԽՍՀՄ-ում ծառայեց որպես [[Բոնգարդ ,Միխաիլ Մոիսեևիչ|Մ. Մ. Բոնգարդի]] համար նոր գաղափարների կոմպլեքսի աղբյուր, որպես «պերցեպտրոնի ալգորիթմի փոքր համեմատական ձևափոխություն թերությունները ուղղելու համար <ref>{{գիրք|վերնագիր = Ճանաչողության խնդիրներ | բնօրինակ = |հեղինակ = Բոնգարդ Մ.Մ. |հղում = |isbn = |էջ = |թիվ = 1967 |հրատարակություն =|վայր = Մ. |հրատարակչություն = ֆիզմաթգիզ }}</ref> : Ա. Պետրովի և [[Բոնգարդ ,Միխաիլ Մոիսեևիչ|Մ. Մ. Բոնգարդի]] աշխատանքները նպաստեցին , որ ԽՍՀՄ-ում ԱՆՑ վերաբերյալ առաջին էյֆորիայի ալիքը հարթվի :հարթվի։
*[[1969 թ. գիտությունում|1969 թ.-ին]] [[Միսկի, Մարվին Լի|Մ. Մինսկին]] հրապարակում է պերցեպտրոնի սահմանափակության փաստերը և ցույց է տալիս , որ այն ունակ չէ լուծելու մի շարք խնդիրներ ([["Ազնվության" և "միայնակ բլոկում" խնդիրներ]])` կապված ներկայացումների այլաձևության հետ։ Նեյրոնային ցանցերի նկատմամբ հետքրքրությունը կտրուկ ընկնում է։
*[[1973 թ. գիտությունում|1973 թ;-ին]] Վ. Վ. Խակիոմովը առաջարկում է սպլայների հիման վրա սինապսներով ոչ գծային մոդել և ներդնում է այն բժշկության, էկոլոգիայի, երկրաբանության խնդիրների լուծման համար։ Խակիմով Վ. Վ.'' Սպլայներով կոռելյացիոն կախվածությունների մոդելավորում երկրաբանության և էկոլոգիայի օրինակներով . — Մ.: «ՄՊՀ»: «Նևա»,2003, 144 էջ.
* [[1974 թ. գիտությունում|1974]] — Պոլ Ջ. Վերբոսը <ref>''Werbos P. J.'', Beyond regression: New tools for prediction and analysis in the behavioral sciences. Ph.D. thesis, Harvard University, Cambridge, MA, 1974.</ref> և Ա. Ի. Գալուշկինը<ref>''Գալուշկին Ա. Ի.'' Կերպարների ճանաչման բազմաշերտ համակարգի սինթեզ — Մ.: «Էներգիա», 1974.</ref> միաժամանակ ստեղծում են [[Սխալների հետադարձ տարածման մեթոդ|սխալների հետադարձ տարածման ալգորիթը]] [[բազմաշերտ պերցեպտրոն]]ների ուսումնասիրման համար :համար։ Հայտնագործությունը առանձնապես ուշադրության չի արժանանում։
* [[1975 թ. գիտությունում|1975]] — ֆուկսիման իրենից ներկայացնում է [[Կոգնիտրոն]]` ինքնաձևավորվող ցանց ` նախատեսված այլընտրանքային [[Կերպարների ճանաչում|կերպարների ճանաչման]] համար , սակայն դա հասանելի է փաստացիորեն կերպարների բոլոր վիճակների հիշման պարագայում :պարագայում։
* [[1982 թ. գիտությունում|1982]] — մոռացության էտապից հետո նեյրոնային ցանցերի նկատմամբ հետքրքրությունը կրկին աճում է :է։ [[Խոպֆիլդ, Ջոն|Ջ. Խոպֆիլդը]] ([[:en:John Joseph Hopfield]]) ցույց տվեց , որ հետադարձ կապերով նեյրոնային ցանցը կարող է իրենից ներկայացնել համակրգ, որը նվազեցնում է էներգիան (այսպես կոչված [[Խոպֆիլդի նեյրոնային ցանց|Խոպֆիլդի ցանց]]) : Կոխոնենի կողմից ներկայացված են անցերի մոդելներ , որոնք ուսուցանվում են առանց ուսուցչի ([[Կոխոնենի նեյրոնային ցանց]])և լուծում են [[կլաստերիզացիա]]յի խնդիրներ,տվյալների վիզուալիզացիա ([[Կոխոնենի ինքնակազմակերպվող քարտ]])և տվյալների վերլուծության այլ խնդիրներ :խնդիրներ։
* [[1986 թ. գիտությունում|1986]] — [[Ռումելխարտ, Դեվիդ|Դովիդ Ի. Ռումելխարտի]], Ջ. Ե. Խինտոնի և Ռոնալդ Ջ. Վիլյամսի<ref name="Rumelhart">''Rumelhart D.E., Hinton G.E., Williams R.J.'', Learning Internal Representations by Error Propagation. In: Parallel Distributed Processing, vol. 1, pp. 318—362. Cambridge, MA, MIT Press. 1986.</ref> ևիրարից անկախ ու միաժամանակ Ս. Ի. Բարցևի և Վ. Ա. Օխոնինի կողմից (Կրասնոյարսկյան խումբ)<ref>''Բարցև Ս. Ի., Օխոնին Վ. Ա.'' Ինֆորմացիայի մշակման արդյունավետ ցանցեր. Կրասնոյարսկ :Կրասնոյարսկ։ АН СССР, 1986. Препринт N 59Б. — 20 с.</ref> մշակվել և զարգացել է [[սխալների հետադարձ տարածման մեթոդը]]. Սկսվեց ուսուցանվող նեյրոնային ցանցերի նկատմամբ հետաքրքրությունը։
 
== Հայտնի կիրառություններ ==
=== Կերպարների ճանաչում և դասակարգում ===
 
Որպես կերպարներ կարող են հանդես գալ տարբեր օբյեկտներ ` տեքստի սիմվոլներ , պատկերներ , երաժշտության օրինակներ և այլն :այլն։ Ուսուցման ժամանակ ցանցին առաջարկվում են կերպարների տարբեր օրինակներ ` նշելով , թե որ դասին է այն պատկանում :պատկանում։ Օրինակը, որպես կանոն, ներկայացվում է որպես արժեքների նախանշանների վեկտոր :վեկտոր։ Այդ դեպքում բոլոր նախանշանների ամբողջությունը պետք է ''միանշանակ որոշի դասը'', որին վերաբերում է օրինակը :օրինակը։ Եթե նախանշանները բավարար չեն, ցանցը կարող է միևնույն կերպարը վերագրել մի քանի դասերի, ինչը հավանաբար <ref name="BaseGroup-Class">[http://www.basegroup.ru/neural/practice.htm BaseGroup Labs — Նեյրոցանցերի պրակտիկ կիրառումն է դասակարգման խնդիրներում]</ref> : Ցանցերի ուսուցման ավարտին նրանց կարելի է ներկայացնել անհայտ վաղեմի կերպարներ և ստանալ որոշակի դասին պատկանելության վերաբերյալ պատասխան :պատասխան։
 
Նման ցանցի տրամաբանությունը բնութագրվում է նրանով, որ ելքային շերտում նեյրոնների քանակը , որպես կանոն, հավասար է որոշվող դասերի քանակին :քանակին։ Այդ դեպքում նեյրոնային ցանցի ելքի և դասի միջև հաստատվում է համապատասխանություն, որն այն ներկայացնում է :է։ Երբ ցանցին ներկայացվում է որոշակի կերպար, ելքերից մեկում պետք է հայտնվի այն բանի նախանշանը, որ կերպարը պատկանում է այդ դասին :դասին։ Միևնույն ժամանակ այլ ելքերում պետք է լինի այն բանի նախանշանը, որ կերպարը տվյալ դասին չի պատկանում <ref>Կոդավորման նման տեսքը հաճախ անվանում են կոդ «1-ը N-ից»</ref>: Եթե երկու կամ ավելի ելքերում առկա է դասին պատկանելիության նախանշան, ապա համարվում է , որ ցանցը «վստահ չէ» իր պատասխանում :պատասխանում։
 
=== Որոշումների ընդունում և կառավարում ===
Այս խնդիրը մոտ է դասակարգման խնդրին։ Դասակարգումը ենթակա է իրավիճակին,որի բնութագրերը մուտքգրվում են նեյրոնային ցանցի մուտքում :մուտքում։ Ցանցի ելքում պետք է այդ պարագայում հայտնվի լուծման կանխատեսումը, որը ցանցը ընդունել է :է։ Այդ պարագայում որպես մուտքային ազդանշաներ կիրառվում են կառավարվող համակարգի վիճակը բնութագրող տարբեր չափանիշներ <ref name="OSPNeuro">[http://www.osp.ru/os/1997/04/16.htm Բաց համակարգեր — նեյրոցանցերում ներդնումը]</ref>.
 
=== Կլաստերիզացիա ===
Կլաստերիզացիայի ներքո հասկացվում է բազմաթիվ մուտքային ազդանշանների բաժանումը դասերի, ընդ որում այնպես, որ ոչ քանակը և ոչ էլ դասերի նախանշանները նախապես հայտնի չեն։ Ուսումնասիրումից հետո նման ցանցը կարող է որոշել, թե որ դասին է պատկանում մուտքային ազդանշանը։ Ցանցը կարող է ազդանշան տալ նաև այն մասին, որ մուտքային ազանշանը չի պատկանում առանձնացված դասերից և ոչ մեկին, ինչն էլ հանդիսանում է նոր, ուսուցանվող ընտրանքում բացակայող տվյալների նախանշանը։ Այդ պարագայում, նման ցանցը ''կարող է առաջացնել նոր, նախկինում անհայտ ազդանշանների դասեր '': Դասերի միջև դասերի և ցանցի կողմից առանձնացված, առարկայական տիրույթում գոյություն ունեցող համապատասխանությունը հաստատվւոմ է մարդու կողմից։ Կլաստերիզացիան իրականացնում են օրինակ ՝ [[Կոխոնենի նեյրոնային ցանց]]ը։
 
Նեյրոնային ցանցերը Կոխոնենի պարզ տարբերակում չեն կարող մեծ լինել, այդ իսկ պատճառով էլ դրանք բաժանում են հիպերշերտերի (հիպերսյունակների) և միջուկի (միկրոսյուների):Եթե համեմատել մարդու ուղեղի հետ, ապա զուգահեռ շերտերի իդեալական քանակը չպետք է գերազանցի 112-ը։ Այդ շերտերը իրենց հերթին կազմում են հիպերշերտեր (հիպերսյունակ), որոնցում առկա է 500 -ից 2000 միկրոսյունակ (միջուկ): Այդ պարագայում յուրաքանչյուր շերտ բաժանվում է բազմաթիվ հիպերսյունակների, որոնք ներտափանցում են շերտերի մեջ :մեջ։ Միկրոսյունակները կոդավորվում են թվերով և միավորներով ,որոնք ելքում որպես արդյունք են ստացվում :ստացվում։ Եթե անհրաժեշտ է , ապա ավելորդ շերտերը կամ նեյրոնները հեռացվում են կամ ավելացվում։ Նեյրոնների կամ շերտերի քանակի որոշման համար իդեալական է սուպերհամակարգիչների կիրառումը :կիրառումը։ Այդպիսի համակարգը թույլ է տալիս , որ նեյրոնային ցանցերը լինեն ճկուն :ճկուն։
 
=== Կանխատեսում ===
=== Ապրոքսիմացիա ===
 
Նեյրոնային ցանցերը կարող են ապրոկսիմացնել անընդհատ ֆունկցիաներ :ֆունկցիաներ։ Ապացուցված է ընդհանրացված [[ապրոկսիմացիա|ապրոկսիմացիոն]] [[թեորեմը]]<ref>''Գորբան Ա.Ն.'', [http://neuroschool.narod.ru/pub/sibzhvm98.pdf Ընդհանրացված ապրոկսիմացիոն թեորեմ և նեյրոնային ցանցերի հաշվողական հնարավորություններ], Հաշվողական մաթեմատիկայի սիբիրյան ամսագիր, 1998. Т.1, № 1. С. 12-24.</ref>: շնորհիվ գծային օպերցիաների և կասկադային կապերի ՝
կարելի է սկզբնական ոչ գծային էլեմենտներից ստանալ սարք, որը հաշվում է ցանկացած [[Անընդհատ պատկեր|անընդհատ ֆունկցիա]] սկզբնապես տրված որոշակի [[ճշտությամբ]]: Դա նշանակում է , որ նեյրոնի ոչ գծային բնութագիրը կարող է լինել կամայական ՝ [[սիգմոդիայինից]] մինչև կամայական փաթեթ կամ [[վեյվլետ]], [[սինուս (ֆունկցիա)|սինուսի]] կամ [[բազմանդամի]]: Ոչ գծային ֆունկցիայի ընտրությունից կարող է կախված լինել կոնկրետ ցանցի [[բարդությունը]] , սակայն ցանկացած ոչ գծայնությամբ ցանցը մնում է ունիվերսալ ապրոկսիմատոր և կառուցվածքի ճիշտ ընտրության դեպքում կարելի է հստակ ապրոկսիմացնել ցանցակացած նեյրոնային ապարատի ֆունկցիայավորումը :ֆունկցիայավորումը։
 
=== Տվյալների սեղմում և ասոցիատիվ հիշողություն ===
 
Նեյրոցանցերի հնարավորությունը տարբեր պարամետրերի միջև փոխկապվածությունների հայտնաբերման հնարավորություն է տալիս մեծ չափերի տվյալները ավելի կոմպակտ ներկայացնել , եթե տվյալները սերտորեն կապված են միմյանց հետ :հետ։ Հակառակ պրոցեսը ` ինֆորմացիայի մասից տվյալների մուտքային հավաքածուի վերականգնումը կոչվում է ասոցիատիվ հիշողություն :հիշողություն։ Ասոցիատիվ հիշողությունը թուլ է տալիս նաև վերկականգնելու մուտքային ազդանշան/կերպարը աղավաղված/վնասված մուտքային տվյալներից :տվյալներից։ Հետերոասոցիատիվ հիշողության լուծումը թույլ է տալի իրականացնել հիշողություն, որը հասցեավորվում է ըստ պարունակության <ref name="OSPNeuro" />:
 
== Որոշումների ընդունման փուլեր ==
* Ուսուցման արդյունավետության ստուգում;
* Պարամետրերի ուղղում,վերջնական ուսուցում;
* Ցանցի [[վերբալիզացիա (ծրագրավորում)|վերբալիզացիա]] <ref>''[[Միրկես, Եվգենի Մոյիսեևիչ|Միրկես Ե. Մ.]]'',[http://www.intuit.ru/department/expert/neuroinf/9/ Տրամաբանական թափանցիկ նեյրոնային ցանցեր և ակնհայտ տվյալների գիտելիքների ստեղծում] , գրքում :գրքում։ Նեյրոինֆորմատիկա / ''Ա. Ն. Գորբան, Վ. Լ. Դունին-Բորկովսկի, Ա. Ն. Կիրդին'' և այլք — Նովոսիբիրսկ։ Գիտություն. Սիբիրյան ընկերություն РАН, 1998. — 296 с ISBN 5-02-031410-2</ref> հետագա կիրառման նպատակով :նպատակով։
 
Արժե այս էտապներից որոշները մանրամասնորեն ուսումնասիրել :ուսումնասիրել։
 
=== Ուսուցման համար տվյալների հավաքագրում ===
Տվյալների հավաքագրումը ցանցի ուսուցման և մշակման համար հանդիսանում է խնդրի լուծման ամենաբարդ փուլը :Տվյալներիփուլը։Տվյալների հավաքագրրումը պետք է բավարարի մի շարք չափանիշների .
* Ներկայացվածություն — տվյալները պետք է ցույց տան առարկայական տիրույթի իրերի և առարկաների իրական վիճակը ,
* Հակադրության բացակայություն — հակադրվող տվյալները ուսուցանվող ընտրանքում կարող են բերել ուսուցանվող ցանցի վատ որակի ,
 
Մուտքային տվյալները բերվում են այնպիսի տեսքի, որով դրանք կարելի է տալ ցանցի մուտքին :մուտքին։ Տվյալների ֆայլում յուրաքանչյուր գրառում կոչվում է "ուսուցանվող զույգ" կամ "ուսուցանվող վեկտոր" : Ուսուցանվող վեկտորը պարունակում է ցանցի յուրաքանչյուր մուտքի մեկական արժեք և կախված ուսուցման տիպից (ուսուցչի հետ կամ առանց) մեկական արժեք ցանցի յուրաքանչյուր ելքի համար :համար։ Ցանցի ուսուցումը «հուքային» ընտրանքում, որպես կանոն, որակյալ արդյուքներ չի տալիս :տալիս։ Գոյություն ունեն ցանցի «ընկալման» բարելավման մի շարք հնարավորություններ .
* ''Նորմալացումը'' կատարվում է , երբ տարբեր մուտքերում հանդիպում են տարբեր չափողականության տվյալներ :տվյալներ։ Օրինակ, ցանցի առաջին մուտքին տրվում են 0-ից մինչև միավոր մեծության արժեքներ , իսկ երկրորդին ՝ 100-իc մինչև 1000: Երկրորդ մուտքում արժեքների նորմավորման բացակայության դեպքում ցանցի ելքի վրա մեծ ազդեցություն կունենա, քան արժեքը առաջին մուտքի դեպքում։ Բոլոր մուտքային և ելքային տվյալների չափողականության նորմավորումը կատարվում է միասին,
* ''[[Քվանտավորում(ազդանշանների մշակում)|Քվանտավորումը]]'' կատարվում է անընդհատ մեծությունների նկատմամբ, որոնց համար առանձնացվում է դիսկրետ արժեքների հավաքածու :հավաքածու։ Օրինակ, քվանտավորումը կիրառվում է ձայնային ազդանշանների հաճախականության տրման ժամանակ ՝ բանավոր խոսքի ճանաչման համար ,
* ''[[Ֆիլտրացիան]]'' իրականացվում է «աղավաղված» տվյալների համար :համար։
 
Բացի այդ, մեծ դեր է խաղում ինչպես մուտքային, այնպես էլ ելքային տվյալների ներկայացումը :ներկայացումը։ Ենթադրենք ցանցը ուսուցանում է տառերի ճանաչումը նկարներով և ունի մեկ թվային ելք ՝ այբուբենում տառի համարը :համարը։ Այդ դեպքում ցանցը կստանա ոչ ճշմարիտ տեղեկություն այն մասին, որ 1 և 2 համարի տառերը իրար ավելի նման են, քան 1 և 3 համարներինը , ինչը ընդհանուր առմամբ ճիշտ չէ :չէ։ Այդ դեպքում, նման իրավիճակներից խուսափելու համար, կիրառում են մեծ թվով ելքերով ցանցի տրամաբանությունը , երբ յուրաքանչյուր ելք ունի իր իմաստը :իմաստը։ Որքան ցանցի ելքերը շատ են, այնքան դասերի միջև հեռավորությունը շատ է և ավելի բարդ է զիջումը :զիջումը։
 
=== Ցանցի տրամաբանության ընտրություն ===
Ցանցի տիպը ընտրելիս պետք է ելնել խնդրի դրվածքից և առկա ուսումնասիրվող տվյալներից :Ուսուցչիտվյալներից։Ուսուցչի միջոցով ուսուցման դեպքում անհրաժեշտ է ընտրանքի յուրաքանչյուր էլեմենտի համար «փորձագիտական» գնահատական :գնահատական։ Երբեմն նման գնահատականի ստացումը մեծ տվյալների զանգվածների համար ուղղակիորեն անհնար է :է։ Այդպիսի դեպքերում ճիշտ ընտրություն է հանդիսանում առանց ուսուցչի ուսուցանվող ցանցի ընտրությունը, օրինակ ՝ [[Կոխոնենի ինքնաձևավորվող քարտը]] կամ [[Խոպֆիլդի նեյրոնային ցանցը]]: Այլ խնդիրների լուծման դեպքում , ինչպիսիք են ժամանակային շարքերի կանխատեսումը , փորձագիտական գնահատականները , արդեն պարունակվում են մուտքային տվյալներում և կարող են առանձնացվել դրանց մշակման դեպքում :դեպքում։ Այդ դեպքում կարելի է օգտագործել [[բազմաշերտ պերցեպտրոնը]] կամ [[Վորդի նեյրոնային ցանցը|Վորդի ցանցը]]:
 
=== Ցանցի հատկությունների փորձագիտական ընտրություն ===
Ընդհանուր կառուցվածքի ընտրությունից հետո կարելի է փորձագիտորեն ընտրել ցանցի պարամետրերը :պարամետրերը։ Պերցեպտրոնի տիպի ցանցերի համար դա կլինի շերտերի թիվը , թաքնված շերտերում բլոկների թիվը (Վորդի ցանցի համար), շրջանցող կապերի առկայությունը կամ բացակայությունը ,նեյրոնների փոխանցելիության գործառույթները։ Շերտերի և նեյրոնների քանակի ընտրության դեպքում պետք է ելնել նրանից, որ "ցանցի ընդհանուր հնարավորությունները այնքան մեծ են, որքան շատ են նեյրոնների միջև գումարային կապերը" : Մյուս կողմից , կապերի քանակը վերևից սահմանափակված է ուսուցանվող տվյալներում գրառումների քանակով :քանակով։
 
=== Ուսուցման պարամետրերի փորձագիտական ընտրություն ===
Կոնկրետ տրամաբանության ընտրությունից հետո անհրաժեշտ է ընտրել ուսուցանվող նեյրոնային ցանցի պարամետրերը :պարամետրերը։ Այս էտապը առավելապես կարևոր է [[Ուսուցում ուսուցչի օգնությամբ|ուսուցչի օգնությամբ ուսուցանվող]] ցանցերի համար :համար։ Պարամետրերի ճիշտ ընտրությունից կախված է ոչ միայն այն, թե որքան արագ ցանցը ճիշտպատասխաններ կտա :կտա։ Օրինակ, ցածր արագությամբ ուսուցման ընտրությունը կմեծացնի գեներացիայի ժամանակը , սակայն միևնույն ժամանակ թույլ կտա խուսափելու [[Նեյրոնային ցանցի անդամալուծություն|ցանցի անդամալուծությունից]]: Ուսուցման ժամանակի մեծացումը կարող է բերել ինչպես գեներացման ժամանակի մեծացմանը, այնպես էլնվազեցմանը ՝ կախված [[սխալների մակերես]]ի ձևից :ձևից։ Ելնելով պարամետրերի նման հակազդեցությունից , կարելի է ենթադրել, որ նրանց արժեքները պետք է փորձագիտորեն ընտրել ՝ ղեկավարվելով ուսուցման պարամետրերով (օրինակ ՝ սխալների նվազեցում կամ ուսուցման ժամանակահատվածի կրճատում) :
 
=== Ցանցի փաստացի ուսուցում ===
Ուսուցման պրոցեսում ցանցը որոշակի հերթականությամբ ուսումնասիրում է ուսուցանվող ընտրանքը :ընտրանքը։ Ուսումնասիրման հերթականությունը կարող է լինել հետևողական , պատահական և այլն :այլն։ [[Առանց ուսուցչի ուսուցանվող]] որոշ ցանցեր ,օրինակ, [[Խոպֆիլդի նեյրոնային ցանց|Խոպֆիլդի ցանցերը]] դիտարկում են ընտրանքը մեկ անգամ :անգամ։ Այլք, օրինակ՝ [[Կոխոնենի նեյրոնային ցանց|Կոխոնենի ցանցը]],ինչպես նաև ցանցեր,որոնք ուսուցանվում են ուսուցչի միջոցով, ընտրանքը դիտարկում են բազմաթիվ անգամներ , և այդ դեպքում ընտրանքով մեկ ամբողջական անցումը կոչվում է "ուսուցման դարաշրջան" : Ուսուցչի օգնությամբ ուսուցման ժամանակ մուտքայինտվյալների հավաքածուն բաժանվումէ երկու մասի ՝ փաստացի ուսուցանվող ընտրանք և թեսթային տվյալներ , իսկ բաժանման սկզբունքը կարող է լինել կամայական :կամայական։ Ուսուցանվող տվյալները տրվում են ցանցին ուսուցման համար , իսկ ստուգողները օգտագործվում են ցանցի սխալների հաշվարկման համար (ստուգող տվյալները երբեք ցանցի ուսուցման համար չեն կիրառվում) : Այդ պարագայում, եթե ստուգող տվյալների միջոցով սխալները նվազեցվում են, ապա իսկապես կատարվում է ընդհանրացում :ընդհանրացում։ Եթե սխալը ուսուցանվող տվյալներում շարունակում է նվազել, իսկ թեսթային տվյալներում ավելանալ, դա նշանակում է , որ ցանցը դադարել է ընդհանրացում կատարել և ուղղակի «հիշում է » ուսուցանվող տվյալները :տվյալները։ Այդ հայտնությունը կոչվում է ցանցի վերաուսուցում կամ [[օվերֆիտտինգ]] : Նման դեպքերում սովորաբարուսուցումը ընդհատում են։ Ուսուցման պրոցեսում կարող են ի հայտ գալ նաև այլ խնդիրներ, ինչպիսիք են [[նեյրոնային ցանցի անդամալուծում|անդամալուծությունը]] կամ ցանցի հայտնվելը լոկալ սխալների մակերևույթ :մակերևույթ։ Հնարավոր չէ նախապես գուշակել այս կամ այն խնդրի առաջացումը և տալ դրանց լուծման ցուցումներ :ցուցումներ։
 
=== Ուսուցման համարժեքության ստուգում ===
Նույնիսկ առաջին հայացքից հաջող ուսուցման դեպքում ցանցը ոչ միշտ է ուսուցանվում հենց նրան, ինչին ստեղծողը ձգտել է հասնել :հասնել։ Հայտնի դեպք է , երբ ցանցւ ուսուցանվել է նկարներով տանկերի ճանաչման համար, սակայնավելի ուշ պարզվել է , որ բոլոր տանկերը նկարվել են միևնույն ֆոնի վրա :վրա։ Արդյունքում ցանցը «սովորել է » ճանաչել լանդշաֆտի այդ տիպը այն բանի փոխարեն, որպեսզի «սովորի» ճանաչել տանկերը<ref>[http://www.popmech.ru/article/2233-po-obrazu-i-podobiyu/ Այդ պատմության հիշատակումը «Հանրահայտ մեխանիկա» ամսագրում]</ref>: Այդ պարագայում, ցանցը «հասկանում է » ոչ այն, ինչը նրանից պահանջվում է, այլ այն , ինչը հնարավոր է ընդհանրացնել :ընդհանրացնել։
 
== Դասակարգում ըստ մուտքային ինֆորմացիայի տեսակի ==
== Դասակարգում ըստ ուսուցման բնութագրի ==
* [[Ուսուցչի հետ ուսուցում]] — նեյրոնային ցանցի որոշումների ելքային տիրույթը հայտնի է ;
* [[Ուսուցում առանց ուսուցչի]] — նեյրոնային ցանցը ձևավորում է որոշումների ելքային տիրույթը ՝ միայն մուտքային ազդեցությունների հիման վրա :վրա։ Այդպիսի ցանցերը կոչվում են ինքնակազմակերպվող ;
* [[Ուսուցում կցորդով]] — շրջակա միջավայրի խրախուսումների և տուգանքների նշանակման համակարգ :համակարգ։
 
== Դասակարգում ըստ սինապսների կարգավորումների բնութագրի ==
Նեյրոնային ցանցերի շարքում ակտիվացնող ֆունկցիան կարող է կախված լինել ոչ միայն կապերի կշռային գործակիցներից <math>w_{ij}</math>, այլ նաև կապի կանալներով իմպուլսների (ազդանշանների) փոխանցման ժամանակից <math>\tau_{ij}</math>: Այդ պատճառով ընդհանուր տեսքով կապի ակտիվացնող (փոխանցող) ֆունկցիան <math>c_{ij}</math> էլեմենտից <math>u_i</math> էլեմենտին <math>u_j</math> ունի հետևյալ տեսքը .
<math>c_{ij}^* = f [ w_{ij}(t), u_i^*(t - \tau_{ij}) ]</math>.
Այդ դեպքում ''սինխրոն ցանց'' անվանում են ցանցը, որի <math>\tau_{ij}</math> փոխանցման ժամանակը յուրաքանչյուր կապի հավասար է կամ զրոյի , կամ ֆիքսված հաստատունի <math>\tau</math> : ''Ոչ սինխրոն'' անվանում են ցանցը, որի <math>\tau_{ij}</math> փոխանցման ժամանակը յուրաքանչյուր կապի համար <math>u_i</math> и <math>u_j</math> էլեմենտների միջև նույնպես անընդհատ է :է։
 
== Դասակարգում ըստ կապերի բնութագրերի ==
=== Ուղիղ տարածման ցանցեր (Feedforward) ===
Բոլոր կապերը խստորեն ուղղված են մուտքային նեյրոններից ելքայիններին :ելքայիններին։ Նմնանատիպ ցանցերի օրինակներ են հանդիսանում [[Պերցեպտրոն|Ռոզենբլատի պերցեպտրոնը]], [[բազմաշերտ պերցեպտրոնը]], [[Վորդի նեյրոնային ցանց|Վորդի ցանցը]] :
 
=== Ռեկուրենտիվ նեյրոնային ցանցեր ===
 
Ելքային նեյրոնից կամ նեյրոններից ազդանշանը թաքնված շերտից մասնակիորեն փոխանցվում է ետ նեյրոնի մուտքային շերտին ([[ետադարձ կապ]]): Ռեկուրենտիվ [[Խոպֆիլդի նեյրոնային ցանց|Խոպֆիլդի ցանցը]] «ֆիլտրում է» մուտքային տվյալները, վերադառնալով կայուն վիճակի, և այդ կերպ թույլ է տալիս լուծել [[Տվյալների նեյրոցանցային սեղմում|տվյալների սեղմման]] և [[Ասոցիատիվ հիշողություն|ասոցիատիվ հիշողության]]կառուցման խնդիրներ <ref>[http://www.intuit.ru/department/expert/neuro/10/ INTUIT.ru — Ռեկուրենտիվ ցանցերը ինչպես ասոցիատիվ հիշող սարքեր]</ref>: Ռեկուրենտիվ ցանցերի մասնավոր դեպք են հանդիսանում երկուղղվածության ցանցերը։ Նման ցանցերում շերտերի միջև առկա են կապեր ինչպես մուտքային շերտից ելքայինին, այնպես էլ ընդհակառակը :ընդհակառակը։ Դասական օրինակ է հանդիսանում [[Կոսկոյի նեյրոնային ցանցը]]:
 
=== Ռադիկալ-բազիսային ֆունկցիաներ ===
3. Մուտքային և տաքնված շերտի կապերի սինապտիկական կշիռները հավասար են միավորի
 
Ուսուցման պրոցեսը նայել գրականությունում :գրականությունում։
 
=== Ինքնակազմակերպվող քարտեզ ===
 
Նմանատիպ ցանցերը իրենցից ներկայացնում են [[ուսուցչի հետ ուսուցում|ուսուցչի հետ ուսուցանվող]] մրցակցային նեյրոնային ցանց,որը իրականացնում է վիզուալիզացիայի և [[կլաստերիզացիա]]յի խնդիր :խնդիր։ Հանդիսանում է բազմաչափ տարածության նախագծման մեթոդ ավելի փոքր չափողականություն ունեցող տարածությունում (առավել հաճախ երկչափ) , կիրառվում է նաև մոդելավորման խնդիրներում, կանխատեսման խնդիրներում և այլն :այլն։ Հանդիսանում է [[Կոխոնենի նեյրոնային ցանց]]ի տեսակներից մեկը :մեկը։<ref>Kohonen, T. (1989/1997/2001), Self-Organizing Maps, Berlin — New York: Springer-Verlag. First edition 1989, second edition 1997, third extended edition 2001, ISBN 0-387-51387-6, ISBN 3-540-67921-9</ref> Կոխոնենի ինքնաձևավորվող քարտեզները առաջին հերթին ծառայում են վիզուալիզացիայի և սկզբնական («բանական») [[Տվյալների ինտելեկտուալ վերլուծություն|տվյալների վերլուծության]] համար :համար։<ref name="Зиновьев">{{գիրք
|հեղինակ = Зиновьев А. Ю.
|վերնագիր = Визуализация многомерных данных
}}</ref>
 
Կոխոնենի ցանցում ազդանշանը միանգամից տարածվում է բոլոր նեյրոնների վրա , սինապսների բացակայող կշիռները ստացվում են որպես հանգույցի վիճակի կորդինատներ և ելքային ազդանշանը ձևավորվում է «հաղթողը տանում է ամեն ինչ» սկզբունքով, այսինքն՝ ոչ զրոյական ելքային ազդանշանը ունի մուտքի օբյեկտին փոխանցվողին մոտ նեյրոն (սինապսների կշիռների իմաստով ) : Ուսուցման պրոցեսում սինապսների կշիռները կարգավորվում են այնպես, որ հանգուցային վանդակները «տեղավորվում են » լոկալ տվյալների տեղերում , այսինքն ՝ նկարագրում են տվյալների ամպի կլաստերային կառուցվածքը , մյուս կողմից ՝ նեյրոնների միջև կապերը համապատասխանում են նախանշանների տարածությունում հարևան կլաստերների համապատասխան կապերի հետ :հետ։
 
Հարմար է դիտարկել այնպիսի քարտեզներ, ինչպիսիք են հանգույցների երկչափ ցանցը , որոնք տեղակայված են բազմաչափ տարածությունում :տարածությունում։ Սկզբնապես ինքնաձևավորվող քարտեզը իրենից ներկայացնում է հանգույցների ցանց, որոնք փոխկապված են :են։ Կոխոնենը դիտարկել է հանգույցների միջև կապերի երկու տարբերակ ՝ ուղղանկյուն և բազմանկյուն ցանց :ցանց։ Տարբերությունը կայանում է նրանում, որ ուղղանկյուն ցանցում յուրաքանչյուր հանգույց կապված է 4 հարևաններով, իսկա բազմանկյունում՝ 6 մոտակա հանգույցներով :հանգույցներով։ Այդպիսի երկու ցանցերի համար Կոխոնենի ցանցի կառուցման պրոցեսը տարբերվում է միայն այն տեղում, որտեղ մոտենում են այդ հանգույցի հարևանները :հարևանները։
 
Ցանցի նախնական ներդրումը տվյալների ցանցում իրականացվում է կամայականորեն :կամայականորեն։ SOM_PAK հեղինակային փաթեթում առաջարկվում է տվյալների տիրույթում հանգույցների նախնական տեղակայման պատահական տարբերակներ և հանգույցների տեղակայման տարբերակը հարթությունում :հարթությունում։ Դրանից հետո հանգույցները սկսում են տեղաբաշխվել տարածությունում համաձայն հետևյալ ալգորիթմի .
# Պատահականորեն ընտրվում են տվյալների կետերը <math>x</math>.
# Որոշվում է <math>x</math> մոտակա քարտեզի հանգույցը (BMU — Best Matching Unit).
# Այդ հանգույցը տեղակայվում է տրված քայլում x -ի ուղղությամբ :ուղղությամբ։ Սակայն, այն միայնակ չի տեղակայվում, այլ իր հետ ներառում է որոշակի քանակության մոտակա հանգույցներ քարտեզի հարևանությամբ :հարևանությամբ։ Բոլոր տեղաշարժվող հանգույցներից առավել ուժեղ տեղափոխվում է կենտրոնական ՝ տվյալների կետին մոտ հանգույցը,իսկ մնացածները, որքն հեռու են BMU-ից , այնքան ավելի դանդաղ են տարհանվում :տարհանվում։ Քարտեզի կարգավորման ժամանակ առանձնացնում են 2 էտապներ ՝ կոպիտկարգավորման (fine-tuning) և ճշգրիտ կարգավորման (fine-tuning) փուլեր :փուլեր։ Առաջին փուլում ընտրվում են շատ հարևան արժեքներ և հանգույցների տեղաշարժը կրում է կոլեկտիվ բնույթ։ Արդյունքում քարտեզը « ուղղվում է » և կոպիտ կերպով արտապատկերում է տվյալների կառուցվածքը, իակ ճշգրիտ կարգավորման փուլում հարևանության շառավիղը 1-2 է և կարգավորվում են արդեն հանգույցների անհատական դիրքերը :դիրքերը։ Բացի այդ, տեղաշարժման մեծությունը ժամանակի ընթացքում համամասնորեն նվազում է , այսինքն ՝ ուսուցման առաջին փուլում ավելի մեծ է , իսկ ավարտին հասնելիս հավասարվում է զրոյի :զրոյի։
# Ալգորիթմը որոշակի ժամանակահատվածի ընթացքում կրկնվում է (իհարկե, մի շարք քայլեր, կարող են տարբեր լինել՝ կախված առաջադրանքից):
 
=== Ֆինանսական ժամանակային շարքերի կանխատեսում ===
 
Մուտքայինտվյալներ - տարվա ընթացքում աճուրդի կուրսը :կուրսը։ Խնդիրն է որոշել վաղվա կուրսը :կուրսը։ Կատարվում է հետևյալ վերափոխումը ՝ կառուցվում է շարք այսօրվա, երեկվա և նախորդ օրվա կուրսերով :կուրսերով։ Հաջորդ շարքում տեղակայվում են նախորդից մեկ օր առաջվա տվյալները և այդպես շարունակ :շարունակ։ Ստացված հավաքածուում ուսումնասիրվում է ցանց 3 մուտքով և 1 ելքով ՝ վաղվա օրվա կուրսը :կուրսը։ Մուտքերը կուրսերն են ՝ 1 օր առաջ, 2 օր առաջ և 3 օր առաջ :առաջ։ Ուսումնասիրվող ցանցի մուտքին տալիս ենք մուտքային տվյալների արժեքները , իսկ ելքում ստանում ենք վաղվա կուրսը :կուրսը։ Դժվար չէ նկատել ,որ այս դեքում ցանցը ուղղակիորեն ելքագրում է մյուս երեք պարամետրերից կախված ելք :ելք։ Եթե ցանկալի է հաշվի առնել նաև ինչ-որ այլ պարամետր (օրինակ ինչ-որ ինդեքս), ապա այն պետք է մուտքագրել որպես մուտքային պարամետր, ուսումնասիրել այն և ստանալ նոր արդյունք :արդյունք։
Առավել ճշգրիտ ուսուցման համար անհրաժեշտ է կիրառել [[Սխալների հետադարձ տարածման մեթոդ|[Սխալների հետադարձ տարածման մեթոդը]],որպես առավել կանխատեսելի և ոչ բարդ իրականացվելի մեթոդ :մեթոդ։
 
=== Հոգեդիագնոստիկա ===
 
Մ. Գ. Դոռեռի և իր համահեղինակների աշխատանքները նվիրված են նեյրոնային ցանցերի [[փորձագիտական համակարգ]]երի հոգեբանական [[ինտուիցիա]]յի զարգացման հնարավորությունների հարցերի քննարկմանը :քննարկմանը։<ref>''Gorban A.N., Rossiyev D.A., Dorrer M.G.'', [http://arxiv.org/ftp/q-bio/papers/0411/0411034.pdf MultiNeuron — Neural Networks Simulator For Medical, Physiological, and Psychological Applications], Wcnn’95, Washington, D.C.: World Congress on Neural Networks 1995 International Neural Network Society Annual Meeting : Renaissance Hotel, Washington, D.C., USA, July 17-21, 1995.</ref><ref>''Доррер М. Г.'', [http://psyfactor.org/lib/dorrer-0.htm Արհեստական նեյրոնային ցանցերի հոգեբանական ինտուիցիա], Դիսս. … 1998: Օնլայն այլ պատճեններ. [http://www.tnu.in.ua/study/books.php?do=file&id=1501], [http://lib.sibnet.ru/referat/6923]</ref> Ստացված արդյունքները հնարավորություն են տալիս բացահայտելու նեյրոնային ցանցերի ինտուիցիայի մեխանիզմը, որը նրանց կողմից ցուցաբերվում է հոգեվերլուծական խնդիրների լուծման ժամանակ :ժամանակ։ Համակարգչային մեթոդների կողքին ստեղծվել է ոչ ստանդարտ ՛՛ինտուիտիվ՛՛ մեթոդ :մեթոդ։
 
=== Հեմոինֆորմատիկա ===
 
Նեյրոնային ցանցերը լայնորեն կիրառվում են քիմիական և բիոքիմիական հետազոտություններում <ref>''Բասկի Ի. Ի. , Պլյուկլին Վ. Ա. , Զեֆիրով Ն. Ս.,'' [http://www.chem.msu.su/rus/vmgu/995/323.pdf Արհեստական նեյրոնային ցանցերի կիրառումը քիմիական և բիոքիմիական հետազոտություններում,] Քիմիա 1999. Т.40. № 5.</ref> Ներկայումս նեյրոնային ցանցերը հանդիսանում են [[խեմոինֆորմատիկա]]յի ամենատարծված մեթոդներից մեկը для [[Գույքային հարաբերությունների քանակական կապերի որոնում|գույքային հարաբերությունների քանակական կապերի որոնման]] համար<ref>{{հոդված | հողինակ = Гальберштам Н. М., Баскин И. И., Палюлин В. А., [[Зефиров, Николай Серафимович|Зефиров Н. С.]] | վերնագիր = Нейронные сети как метод поиска зависимостей структура – свойство органических соединений | հրատարակություն = Успехи химии | տարեթիվ = 2003 | ծավալ = 72 | համար = 7 | էջ = 706-727}}</ref><ref>{{статья | автор = Баскин И. И., Палюлин В. А., Зефиров Н. С. | заглавие = Многослойные персептроны в исследовании зависимостей սահամանափակ կապերի «գույքային հարաբերություններ» | հրատարակություն = Российский химический журнал (Журнал Российского химического общества им. Д.И.Менделеева) | տարեթիվ = 2006 | ծավալ = 50 | էջ = 86-96}}</ref>,որոնց շնորհիվ ակտիվորեն կիրառվում են որպես ֆիզիկա- քիմիական և բիոլոգիական ակտիվությունների կանխատեսման համար, ինչպես նաև նոր դեղորայքային պարագաների մշակման համար :համար։
 
=== Նեյրոկառավարում ===
 
Նեյրոնային ցանցերը հաջող կերպով ընդունվում են [[Կարգավորիչ (կառավարման տեսություն)|կառավարման համակարգերի]] սինթեզի համար դինամիկ օբյեկտներով <ref>{{գիրք |վերնագիր = Նեյրոկառավարում և նրա հավելվածները|բնօրինակ = Neuro-Control and its Applications |հեղինակ = Սիգերու Օմատու, արզուկի Խալիդ, Ռուբիա Յուսոֆ |հղում = |isbn = ISBN 5-93108-006-6 |էջ = 272 |տարեթիվ = 2000 |հրատարակություն = 2-րդ |վայր = Մ. |հրատարակչություն = [["Ռադիոտեխնիկա" ամսագրի հրատարակչական ընկերություն)|ՌԱՀԸ]]}}</ref><ref>''Ա. Ն. Չերնոդուբ, Դ. Ա. Ձյուբա'' [http://web.archive.org/web/20120113002620/http://ailen.org/wp-content/uploads/2011/08/2011_NeuroControl_Survey.pdf Նեյրոկառավարման մեթոդների ներկայացում] // Ծրագրավորման խնդիրներ. — 2011. — No 2. — Էջ 79-94.</ref>: Նեյրոցանցերը օժտված են ունիկալ հատկությունների շարքով, որոնք դրանք ավելի հզոր գործիք են դարձնում ղեկավարման համակարգերի ստեղծման համար :համար։ Դրանք են ՝ օրինակների վրա ուսուցման հնարավորությունը և տվյալների ընդհանրացում , կառավարման օբյեկտի հատկություններին և արտաքին միջավայրի փոփոխություններին հարմարվելու ունակությունը , ոչ գծային կարգավորիչների սինթեզին հարմարվելու ունակություն, վնասված տարերրի բարձր դիմադրողականությունը իսկզբանե ներդրված է երկակի նեյրոցանցային կառուցվածքում :կառուցվածքում։
 
== Հղումներ ==