«Ուիլյամ Համիլտոն»–ի խմբագրումների տարբերություն

Նկարագրված վարիացիոն մեթոդները, որոնք առաջարկել է Համիլտոնը օպտիկայի խնդիրների համար, շուտով զարգացրեց [[մեխանիկա]]յի ընդհանուր խնդրի կիրառման մեջ, որտեղ դիտարկեց «բնութագրիչ ֆունկցիայի» անալոգը՝ «գլխավոր ֆունկցիան». դա իրենից ներկայացնում է [[Գործողություն (ֆիզիկա)|գործողության]] ինտեգրալ<ref name="lanczos">{{книга|автор=[[Ланцош, Корнелий|Ланцош К.]]|заглавие=Вариационные принципы механики|место=М.|издательство=Мир|год=1965|страниц=408}} — С. 257, 393.</ref>։
[[Դինամիկա (մեխանիկա)|Դինամիկայի]] հիմնական խնդիրն է. հաշվարկել մարմնի կամ մարմինների համակարգի շարժումը գործող ուժերի տրված բաժանման դեպքում։ Ընդ որում մարմինների համակարգի վրա կարող են դրված լինել [[մեխանիկական կապ|կապեր]](ստացիոնար կամ ժամանակի ընթացքում փոփոխվող)։ XVIII դարի վերջում [[Ժոզեֆ Լուի Լագրանժ|Լագրանժն]] իր «Անալիտիկ մեխանիկայում» ձևակերպեց վարիացիոն սկզբունքի իր տարբերակը<ref name=RUM>{{статья |автор=[[Румянцев, Валентин Витальевич|Румянцев В. В.]] |ref=Румянцев В. В. |заглавие=Леонард Эйлер и вариационные принципы механики. § 4. Принцип Гамильтона и оптико-механическая аналогия |страницы=191—202 |издание=Развитие идей Леонарда Эйлера и современная наука. |издательство=Наука |место=М. |год=1988 }}</ref>։
1834-1835 թվականներին Համիլտոնը «Դինամիկայի ընդհանուր մեթոդի մասին» իր երկու հոդվածներում հրատարակեց վարիացիոն նոր սկզբունք (այժմ հայտնի ինչպես '''[[ստացիոնար գործողության սկզբունք]]''' կամ '''[[Փոքրագույն գործողության սկզբունք|Համիլտոնի սկզբունք]]'''<ref name="rumyancev">{{книга|автор=[[Румянцев, Валентин Витальевич|Румянцев В. В.]] |часть=Гамильтона — Остроградского принцип|заглавие=Математическая энциклопедия. Т. 1|место=М.|издательство=Сов. энциклопедия|год=1977}} — 1152 стб. — Стб. 856—857.</ref>).
: <math> \delta \mathcal{S}\, = \delta \int_{t_1}^{t_2} L(\mathbf{q}(t),\mathbf{\dot{q}}(t), t)\ {\rm d}t \,=\, 0\,\,.</math>
 
782

edits