«Ուիլյամ Համիլտոն»–ի խմբագրումների տարբերություն

 
===== Քվատերնիոնների կիրառություն =====
Համիլտոնի աշխատանքների խոշորագույն շարունակողն ու քվատերնիոնների մասսայականացնողը եղավ նրա աշակերտը՝ շոտլանդացի մաթեմատիկոս [[Պիտեր Տետ]]ը, որը դրանց բազմաթիվ կիրառություններ առաջարկեց երկրաչափությունում, [[սֆերիկ եռանկյունաչափություն]]ում և ֆիզիկայում<ref name=ALEX/>: Այդպիսի կիրառություններից մեկը եղավ տարածական ձևափոխությունների ուսումնասիրությունը: Կոմպլեքս թվերը հաջողությամբ օգտագործվում են հարթության վրա կամայական շարժումների մոդելավորման համար. թվերի գումարմանը համապատասխանում է [[Կոմպլեքս հարթություն|կոմպլեքս հարթության]] կետերի փոխանցումը, իսկ բազմապատկմանը՝ պտույտը (միաժամանակյա ձգմամբ, եթե արտադրյալի մոդուլը 1-ից տարբեր է){{sfn |Клейн Ф.|1937|с=225—226 }}:
 
Քվատերնիոնները հարմար գործիք են էվկլիդյան եռաչափ տարածությունում շարժումների հետազոտության համար. նրանց այդպիսի օգտագործումը հիմնված է քվատերնիոնների երկրաչափա-թվային ինտերպրետացիայի վրա, որի դեպքում քվատերնիոն միավորներին համադրվում են որևէ աջակողմյան օրթոնորմավորված բազիսի վեկտորներ եռաչափ տարածությունում<ref>{{книга|автор=[[Журавлёв, Виктор Филиппович|Журавлёв В. Ф.]]|заглавие=Основы теоретической механики. 2-е изд|место=М.|издательство=Физматлит|год=2001|страниц=320|isbn=5-94052-041-3}} — С. 32—38.</ref>: Այդ ժամանակ ստեղծվում է փոխադարձ համարժեք համապատասխանություն եռաչափ պտույտների և քվատերնիոնների մարմինների ներքին ավտոմորֆիզմների միջև<ref>{{книга|заглавие=Общая алгебра. Т. 1|ответственный=Под ред. Л.&nbsp;А.&nbsp;Скорнякова|место=М.|издательство=Наука|год=1990|страниц=592|серия=Справочная математическая библиотека|isbn=5-02-014426-6}} — С. 296, 335—336.</ref><ref>{{книга|автор=[[Голубев, Юрий Филиппович|Голубев Ю. Ф.]]|заглавие=Основы теоретической механики. 2-е изд|место=М.|издательство=Изд-во Моск. ун-та|год=2000|страниц=719|isbn=5-211-04244-1}} — С. 110—112.</ref>; յուրաքանչյուր այդպիսի ավտոմորֆիզմը կարող է առաջանալ 1-ի հավասար մոդուլով քվատերնիոնից (քվատերնիոնի <math>q</math> մոդուլը սահմանվում է որպես նրա <math>a,b,c,d</math> բաղադրիչների քառակուսիների գումարից քառակուսի արմատ)<ref>{{книга|автор=[[Шафаревич, Игорь Ростиславович|Шафаревич И. Р.]]|заглавие=Основные понятия алгебры|место=М.|издательство=ВИНИТИ АН СССР|год=1986|страниц=289|серия=Современные проблемы математики. Фундаментальные направления. Т. 11}} — С. 76.</ref>): Ընդ որում երկու պտույտների հաջորդական իրականացմանը համապատասխանում է պտույտի համապատասխան քվատերնիոնների արտադրյալը: Այս փաստը լուսաբանում է քվատերնիոնների բազմապատկման ոչ տեղափոխական լինելը, քանի որ երկու եռաչափ պտույտների իրականացման արդյունքը էականորեն կախված է դրանց իրականցման կարգից{{sfn |Клейн Ф.|1937|с=225—226 }}:
 
Քվատերնիոնների ուսումնասիրության ընթացքում Համիլտոնը ներմուծեց [[վեկտորական դաշտ]]ի հասկացությունը («''դաշտ''» եզրույթը նրա մոտ դեռևս բացակայում է, դրա փոխարեն օգտագործվել է կետի վեկտորական ֆունկցիայի հասկացությունը) և դրաց [[Վեկտորական հաշիվ|վեկտորական հաշվի]] հիմքերը:
 
Համիլտոնի աշխատանքների հիման վրա [[Ջոզայա Գիբս]]ը և [[Օլիվեր Հեվիսայդ]]ն առանձնացրեցին ու զարգացրեցին վեկտորական հաշվի համակարգը, արդեն քվատերնիոնների տեսությունից անկախ, այն չափազանց օգտակար եղավ կիրառական մաթեմատիկայում և ներառվեց դասագրքերում{{sfn |Стиллвелл Д.|2004|с=388 }}:
 
Ջեյմս Մաքսվելը քվատերնիոնների հետ ծանոթացավ իր դպրոցական ընկեր Տետի շնորհիվ, և դրանք բարձր գնահատեց. «Քվատերնիոնների հաշվման հայտնագործությունը մի քայլ առաջ է տարածության հետ կապված մեծությունների ճանաչման մեջ, որն իր կարևորությամբ կարելի է համեմատել միայն [[Ռենե Դեկարտ|Դեկարտի]] կողմից տարածական կոորդինատների հայտնաբերման հետ»<ref>{{книга |автор=Максвелл Дж. К.|заглавие=Статьи и речи |место=Μ. |издательство=Наука |год=1968 |страницы=39. }}</ref>: Մաքսվելլի՝ [[էլեկտրամագնիսական դաշտ]]ի տեսության մասին հոդվածներում քվատերնիոնյան սիմվոլիկան կիրառվում է [[դիֆերենցիալ օպերատոր]]ների ներկայացման համար<ref>{{cite web|url=http://vivovoco.astronet.ru/VV/PAPERS/BIO/KRYLOV/KRYLOV_23.HTM|title=Отзыв о работах академика П. П. Лазарева |author=Крылов А. Н. |accessdate=2013-12-02}}</ref>, բայց և այնպես իր վերջին աշխատություններում Մաքսվելլը հրաժարվեց քվատերնիոնյան սիմվոլիկայից՝ հօգուտ Գիբսի ու Հեվիսայդի ավելի հարմար ու դիտողական վեկտորական հաշվի<ref>{{книга|автор=Александрова Η. В.|заглавие=Из истории векторного исчисления|место=Μ.|издательство=Изд-во МАИ|год=1992|страниц=152}}</ref>:
 
===== Քվատերնիոնների տեսության պատմական նշանակությունը =====
XX դարում մի քնի փորձեր արվեցին քվատերնիոն մոդելները կիրառելու [[քվանտային մեխանիկա]]յում<ref>{{книга|автор=Курочкин Ю. А. |заглавие=Кватернионы и некоторые приложения их в физике. Препринт диссертации № 109|издание=ИФ АН БССР |год=1976}}</ref> և
782

edits