«Ուիլյամ Համիլտոն»–ի խմբագրումների տարբերություն

Մյուս [[բազմանիստ]]ի՝ տասներկուանիստի ուսումնասիրության հետևանքը եղավ [[գրաֆների տեսություն]]ում օգտակար հասկացության՝ [[Գրաֆ|համիլտոնյան գրաֆ]]ի երևան գալուն<ref>{{книга|автор=Акимов О. Е. |часть=Задача Гамильтона о цепях додекаэдра |заглавие=Дискретная математика. Логика, группы, графы, фракталы|ссылка=http://sceptic-ratio.narod.ru/ma/dm3-1i.htm |год=2005|страниц=656|isbn=5-9900342-1-0}}</ref>; բացի այդ, Համիլտոնը հորինեց տասներկուանիստի կողերի շրջանցման հետ կապված հետաքրքրաշարժ գլուխկոտրուկ և այն վաճառքի թողարկեց [[1859 թվական]]ին: Այդ խաղը, որը ձևակերպվել էր ինչպես «Ճանապարհորդություն երկրի շուրջը», երկար ժամանակ թողարկվում էր [[Եվրոպա]]յի շատ երկրներում<ref>{{книга|автор=Гарднер, Мартин.|часть=«Икосаэдрическая игра» и «Ханойская башня»|заглавие=Математические головоломки и развлечения|ссылка=http://stepanov.lk.net/gardner/hex/hex06.html |место=Μ. |издательство=АСТ |год=2010 |isbn=978-5-17-068027-6}}.</ref>:
 
Քվատերնիոնների տեսության առաջ գալու պահից Համիլտոնը միշտ նկատի է ունեցել նրա շրջանակներում առաջացած վեկտորների ապարատը տարածական [[երկրաչափություն]]ում: Ընդ որում <math>A</math> կետում սկիզբ և <math>B</math> կետում վերջ ունեցող <math>\overline{AB}</math> ուղղորդված վեկտորըհատվածը Համիլտոնը մեկնաբանել է հենց ինչպես վեկտոր և, հետևելով [[Ավգուստ Մյոբիուս|Մյոբիուսին]], գրառել է <math>B-A</math> տեսքով (այսինքն՝ ինչպես վերջնակետի ու սկզբնակետի տարբերություն): «Վեկտոր» եզրույթը կազմվել է լատիներեն ''vehere'' ‘տանել, ձգել’ բայից (նկատի է առնվել շարժվող կետի տեղափոխությունը <math>A</math> սկզբնական դիրքից <math>B</math>) վերջնական դիրք{{sfn|Александрова Н. В.|1982|с=208}}:
 
Երկրաչափությունը պարտական է Համիլտոնին այնպիսի եզրույթների համար, ինչպիսիք են կոլինեարություն, կոմպլանարություն (կիրառվել են միայն կետերի նկատմամբ; ընդհանուր սկզբնակետով վեկտորների համար համապատասխան դեպքերում օգտագործվել են ''termino-collinear'' և ''termino-coplanar'' արտահայտությունները){{sfn|Александрова Н. В.|1982|с=208}}:
для векторов с общим началом в соответствующих случаях употреблялись выражения
''termino-collinear'' и ''termino-coplanar''){{sfn|Александрова Н. В.|1982|с=208}}:
 
Համիլտոնի մի քանի աշխատություններ նվիրված են [[Նիլս Հենրիկ Աբել|Աբելի]] աշխատանքների ճշգրտմանը<ref>{{cite web|url=http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Badano/|title=On Equations of the Fifth Degree|last=William R. Hamilton|accessdate=2013-12-09}}</ref> թվային մթոդների վերաբերյալ: Քվատերնիոնների հետազոտության ընթացքում Համիլտոնն ապացուցեց մի շարք հանրահաշվական թեորեմներ, որոնք վերաբերում են [[մատրից]]ների տեսությանը: Գծային հանրահաշվում կարևոր [[Համիլտոնի-Կելիի թեորեմ]]ը նա ապացուցեց <math>4 \times 4</math> չափսի մատրիցների համար, մատրիցի հասկացությունն ու թեորեմի ձևակերպումը (առանց ապացուցման) հրապարակել է [[Արթուր Կելի]]ն (1858){{sfn |Математика XIX века. Том I|1978|с=68 }}, ընդհանուր դեպքի համար ապացույցը տվել է [[Ֆերդինանտ Գեորգ Ֆրոբենիուս|Ֆրոբենիուսը]] [[1898 թվական]]ին:
 
=== Օպտիկա ===
782

edits