«Կեղծ միավոր»–ի խմբագրումների տարբերություն

չ
oգտվելով ԱՎԲ
չ (oգտվելով ԱՎԲ)
 
== Կոմպլեքս թվեր ==
[[Պատկեր:ImaginaryUnit5.svg|thumb|right|<math>i</math> [[կոմպլեքսային հարթություն|կոմպլեքս հարթություն]]. [[Իրականիրական թվեր|իրական թվերը]]ը գտնվում են հորիզոնական առանցքի վրա, [[Կեղծ թիվը |կեղծ]]՝ ուղղաձիգ առանցքի վրա]]
Մաթեմատիկայում, ֆիզիկայում կեղծ միավոր նշանակում են լատինական i կամ j, այն հնարավորություն է տալիս ընդլայնելու իրական թվերի դաշտը մինչև կոմպլեքս թվերը։ Կեղծ միավորի ներմուծման պատճառը կայանում է նրանում, որ ոչ ցանկացած իրական գործակիցներով բազմանդամային հավասարում f(x)=0 ունի լուծում իրական թվերի դաշտում։ Այնպես որ <math>x^2 + 1 = 0</math>հավասարումը չունի իրական արմատներ։Երբեմն պարզվում է, որ ցանկացած կոմպլեքս գործակիցներով բազմանդամային հավասարում ունի կոմպլեքս լուծում՝ «Հանրահաշվի հիմնական թեորեմ»։
 
Պատմականորեն կեղծ միավորը սկզբում ներմուծել են իրական խորանարդ հավասարումը լուծելու համար, հաճախ իրական երեք արմատների գոյության դեպքում , նրանցից երկուսի ստացումը Կարդանոյի բանաձևից պահանջվում էր վերցնել խորանարդ արմատ կոմպլեքս թվերով։
 
Պնդումը, որ կեղծ միավորը՝ դա«քառակուսի արմատն է −1-ից», ստույգ չէ, չէ որ «−1» ունի երկու քառակուսի արմատ, որոնցից մեկը «i»,իսկ մյուսը՝ «−i»։Դրանցից որ մեկը ընդունել կեղծ միավոր՝ կարևոր չէ, բոլոր հավասարությունները պահպանում են ուժը միաժամանակ փոխարինումը բոլոր «i»-երը «-i»-երով։ Երբեմն այդ երկիմաստությունից, որպեսզի խուսափենք սխալ հաշվումներից, պետք չէ օգտագործել i նշանակումը ինչպես ( <math>\sqrt{-1}</math>).
 
 
 
 
===Սահմանում===
որտեղ''n'' — ցանկացած ամբողջ թիվ է։
Այստեղից: <math>i^n = i^{n \bmod 4}\,</math>
որտեղ''mod 4'' — դա 4-ի [[ բաժանման մնացորդն է]] .
<math>i^i</math>թիվը հանդիսանում է [[Вещественное число|իրական]]:
: <math>i^i={e^{(i\pi/2)i}}=e^{i^2\pi/2}=e^{-\pi/2}=0{,}20787957635\ldots</math><ref>[[Էյլերի բանաձև#Показательная форма комплексного числа|Կոմպլեքս թվի ցուցանշական ձև]]</ref>
[[Պատկեր:Корни кубические из мнимой единицы.svg|thumb|խորանարդ արմատներ կեղծ միավորից (եռանկյան գագաթներ)]]
 
Կոմպլեքս թվերի դաշտում ''n''-րդաստիճանի արմատը ունի ''n'' լուծումներ ։ Կոմպլեքս հարթությունում կեղծ միավորի արմատները գտնվում են [[կանոնավոր բազմանկյան|կանոնավոր n անկյան]] գագաթներում, ներգծված միավոր շառավղով շրջանագծին։
:<math>u_k=\cos {\frac{{\frac{\pi}{2}} + 2\pi k}{n}} +i\ \sin {\frac{{\frac{\pi}{2}} + 2\pi k}{n}}, \quad k=0,1,...,n-1</math>
դա հետևում է [[формула Муавра|Մուավրի բանձևից]] և այնպես որ կեղծ միավորը կարող է նաև ներկայացվել եռանկյունաչափական տեսքով։<math>i=\cos\ {\frac{\pi}{2}} + i\ \sin\ {\frac{\pi}{2}}</math>