«Խաղերի տեսություն»–ի խմբագրումների տարբերություն

չ
Ռոբոտը ավելացնում է․: tl:Teoriya ng laro; cosmetic changes
չ (Ռոբոտը ավելացնում է․: ru:Теория игр)
չ (Ռոբոտը ավելացնում է․: tl:Teoriya ng laro; cosmetic changes)
{{wikify}}
{{unreferenced}}
Խաղերի տեսությունը, մաթեմատիկայի մի ճյուղ է, որն ուսումնասիրում է օպտիմալ որոշումների ընդունումը մրցակցության ժամանակ: Մրցակցություն ասելով հասկանում ենք մի երևույթ, որին մասնակցում են տարբեր կողմեր, տարբեր հնարավորություններով ընձեռված, որոնք ունեն տարբեր հետքրքրություններ և որոնք ազատ են ընտրելու իրենց համար առավել արդյունավետ ռազմավարությունը: Մրցակցության վերաբերող առանձին մասեր քննարկվել են տարբեր մաթեմատիկոսների կողմից: Բայց առավել լայն մաթեմատիկայի այս ճյուղը առաջին անգամ քննարկվել է ամերիկացի գիտնականներ Նեյմանի ևՄորգենշտերնի կողմից(1944), որպես մաթեմաթիկական մոտեցման մեթոդ մրցակցային տնտեսության մեջ: Հետագա զարգացման հետևանքով այն ավելի զարգացավ, և դարցավ առանձին ճյուղ:
Խաղերի տեսությունը (theory of games), դա որոշումների ընդունման մաթեմաթիկական հաշվարկն է, որը իրականացվում է երկու կամ ավելի անձանց կողմից և որտեղ յուրաքնչյուրը հետապնդում է մեկ կամ մի քանի նպատակ, և այդ նպատակները կարող են ամբողջովին կամ մասնակի կերպով համընկնել:
Շատ հաճախ պրակտիկայում հանդիպում են այնպիսի դեպքեր, երբ անհրաժեշտ է ընդունել որոշումներ ինֆորմացիայի բացակայության պայմաններում, առաջանում են իրադրություններ, երբ երկու (կամ մի քանի) կողմերը հետապնդում են տարբեր նպատակներ, և հաճախ յուրաքանչյուր կողմի հետագա գործունեությունը կախված է մրցակցի հմապատասխան քայլերից, այսինք յուրաքնչյուր խաղացողի քայլերի արդյունքը կախված է լինում հակառակորդի պատասխան քայլից, խաղի հիմնական նպատակը խաղացողներից մեկի հաղթանակն է (սա իհարկե 0 միավոր խաղի դեպքում): Տնետեսության մեջ այսպիսի դեպքեր շատ հաճախ են հանդիպում, օրինակ` փոխհարաբերությունները արտադրողի և մատակարարի միջև, վաճառողի և սպառողի միջև և այլն: Այս բոլոր դեպքերում էլ կողմերից յուրաքանչյուրը ձգտում է մինիմալացնել իր ծախսերը` մաքսիմալացնելով իր շահույթը: Բացի դրանից կողմերից յուրաքանչյուրը պետք է հաշվի նստի ոչ միայն իր նպատակների հետ այլ նաև հակառակորդ կողմի նպատակների հետ, հաշվի առնելով այն բոլոր անհայտ և հայտնի որոշումները, որոնք կարող են ընդունվել գործընկեր կազմակերպությունների կողմից:
Ծագաց այսպիսի խնդիրների ճիշտ լուծման համար անհրաժեշտ են հիմնավորված և գործող մեթոդներ: Հենց այսպիսի մեթոդների մշակմամբ էլ զբաղվում է խաղերի տեսությունը:
Խաղերի տեսության հիմնական հասկացությունները
Խաղը կոչվում է 0 միավոր խաղ (կամ антагонистической), եթե խաղացողներից մեկի շահումը հավասար է մյուս խաղացողի նույնչափ կորստին, այսինքն եթե a նշանակենք առաջին կաղացողի շահումը, իսկ b մյուս խաղացողի, ապա 0 միավոր խաղի դեպքում b = -а, դրա հմար էլ բավարար է դիտարկել միայն a:
Խաղացողների կողմից իրականացվող գործընթացները կոչվում են քայլեր: Քայլերն կարող են լինել գիտակցական և պատահական: Գիտակցական քայլերը, դա խաղացողի կողմից գիտակից կերպով կատարված ընտրությունն է հնարավոր քայլերից (օրինակ քայլը շախմատում): Պատահական քայլը դա պատահական ընտրված քայլն է (օրինակ, երբ բաժանում ենք խաղաթղթերը):
Խաղացողի ռազմավարություն անվանում են այն քայլերի ամբողջությունը, որը կատարում է խաղացողը յուրաքանչյուր առաջացած իրավիճակում: Սովորաբար խաղի ընթացքում յուրաքանչյուր քայլում խաղացողը ընտրություն է կատարում կախված կոնկրետ իրավիճակից: Բայց տեսակնաորեն հնարավոր է բոլոր որոշումները ընդունել միանգամից, որոնք կարող են իրականացվել իրար հետևից առաջացած ցանկացած իրավիճակում:
Խաղը կոչվում է վերջավոր եթե յուրաքանչյուր խաղացողի ռազմավարության քանակը սահմանափակ է, և անվերջ հակառակ դեպքում:
Խաղը լուծելու համար պետք է յուրաքանչյուր խաղացող ռազմավարություն մշակի, որը պետք է բավարարի օպտիմալությանը, այսինքն խաղացողներից մեկը պետք է ստանա մաքսիմալ շահույթ, երբ երկրորդը հավատարիմ է մնում իր ռազմավարությանը: : Նույն ժամանակ երկրորդ խաղաացողը պետք է ունենա մինիմում վնաս, եթե առաջինը հավատարիմ է մնում իր ռազմավարությանը: Այսխիսի ռազմավարությունները կոճվում են օպտիմալ ռազմավարություններ: Վերջիններս պետք է բավարարեն դիմացկունության պայմանին, այսինք յուրաքանչյուր խաղացողի շահավետ չպետք է լինի հրաժարվել իր ռազմավարությունից նույն խաղում:
Եթե խաղը կրկնվում է շատ անգամներ, ապա խաղացողներին հետաքրքրում է ոչ թե հաղթանակը կամ պարտությունը յուրաքանչյուր կարճ խաղերում, այլ միջին հաղթանակը կամ պարտությունը:
Խաղերի տեսության նպատակը հանդիսանում է օպտիմալ ռազմավարության մշակումը յուրաքանչյուր խաղացողի համար:
Խաղերը կարելի է դասակարգել ըստ խաղացողների քանակի, ռազմավարության քանակի, ըստ խաղացողների փոխհարաբերության, ըստ շահույթի չափի, քայլերի քանակության, ըստ ինֆորմացիայի հասանելիություն:
Ըստ խաղացողների քանակի տարբերում են երկու 2 և n հոգանոց խաղեր: Ավելի լայն ուսումնասիրված է երկու հոգանոց խաղերը: Ինչքան ավելի շատ խաղացողներ այնքան ավելի շատ խնդիրներ:
Ըստ ռազմավարությունների քանակի կարելի է բաժանել վերջավոր և անվերջ խաղեր: Եթե կան վերջավոր թվով ռազմավարություններ, ապա խաղը անվանում են վերջավոր, հակառակ դեպքում անվերջ:
Ըստ խաղացողների միջև փոխհրաբերությունների կարելի է բաժանել հետևյալ տեսակի խաղերը`
1. Ոչ կոալիցիոն խաղեր. Խաղացողները չեն կարող փոխհամաձայնեցնել իրենց քայլերը
2. Կոալիցիոն կամ կոոպերատիվ խաղեր. Կարող են կոալիցիա կազմել
Ըստ շահույթի չափի խաղերը բաժանվում են` 0 միավոր խաղի (բոլոր խաղացողների ընդհանուր կապիտալը չի փոխվում) և ոչ զրոյական խաղեր:
[[ta:விளையாட்டுக் கொள்கை]]
[[th:ทฤษฎีเกม]]
[[tl:Teoriya ng laro]]
[[tr:Oyun kuramı]]
[[uk:Теорія ігор]]
72 061

edits