«Խաղերի տեսություն»–ի խմբագրումների տարբերություն

clean up, replaced: : → ։ (38) oգտվելով ԱՎԲ
չ
(clean up, replaced: : → ։ (38) oգտվելով ԱՎԲ)
{{wikify}}
{{unreferenced}}
'''Խաղերի տեսությունը''' մաթեմատիկայի մի ճյուղ է, որն ուսումնասիրում է ռացիոնալ ակտորների կողմից օպտիմալ որոշումների ընդունումը մրցակցության ժամանակ:ժամանակ։ Մրցակցություն ասելով հասկանում ենք մի երևույթ, որին մասնակցում են տարբեր կողմեր՝ տարբեր հնարավորություններով ընձեռված, որոնք ունեն տարբեր հետաքրքրություններ և որոնք ազատ են ընտրելու իրենց համար առավել արդյունավետ ռազմավարությունը:ռազմավարությունը։ Մրցակցության վերաբերող առանձին մասեր քննարկվել են տարբեր մաթեմատիկոսների կողմից:կողմից։ Բայց առավել լայն մաթեմատիկայի այս ճյուղը առաջին անգամ քննարկվել է ամերիկացի գիտնականներ Նեյմանի և Մորգենշտերնի կողմից ([[1944]]), որպես մաթեմատիկական մոտեցման մեթոդ մրցակցային տնտեսության մեջ:մեջ։ Հետագա զարգացման հետևանքով այն ավելի զարգացավ և դարձավ առանձին ճյուղ:ճյուղ։
 
Խաղերի տեսությունը (game theory) որոշումների ընդունման մաթեմատիկական մոդելավորում է, որը իրականացվում է երկու կամ ավելի ակտորների կողմից և որտեղ յուրաքանչյուրը հետապնդում է մեկ կամ մի քանի նպատակ, և այդ նպատակները կարող են ամբողջովին կամ մասնակի կերպով համընկնել:համընկնել։
 
Շատ հաճախ գործնականում հանդիպում են այնպիսի դեպքեր, երբ անհրաժեշտ է ընդունել որոշումներ ինֆորմացիայի բացակայության պայմաններում, առաջանում են իրադրություններ, երբ երկու (կամ մի քանի) կողմերը հետապնդում են տարբեր նպատակներ, և հաճախ յուրաքանչյուր կողմի հետագա գործունեությունը կախված է մրցակցի համապատասխան քայլերից, այսինքն՝ յուրաքանչյուր խաղացողի քայլերի արդյունքը կախված է լինում հակառակորդի պատասխան քայլից, խաղի հիմնական նպատակը խաղացողներից մեկի հաղթանակն է (սա իհարկե 0 միավոր խաղի դեպքում):։ Տնտեսության մեջ այսպիսի դեպքեր շատ հաճախ են հանդիպում, օրինակ` փոխհարաբերությունները արտադրողի և մատակարարի միջև, վաճառողի և սպառողի միջև և այլն:այլն։ Այս բոլոր դեպքերում էլ կողմերից յուրաքանչյուրը ձգտում է մինիմալացնել իր ծախսերը` մաքսիմալացնելով իր շահույթը:շահույթը։ Բացի դրանից կողմերից յուրաքանչյուրը պետք է հաշվի նստի ոչ միայն իր նպատակների հետ, այլ նաև հակառակորդ կողմի նպատակների հետ՝ հաշվի առնելով այն բոլոր անհայտ և հայտնի որոշումները, որոնք կարող են ընդունվել գործընկեր կազմակերպությունների կողմից: կողմից։
 
Ծագած այսպիսի խնդիրների ճիշտ լուծման համար անհրաժեշտ են հիմնավորված և գործող մեթոդներ:մեթոդներ։ Հենց այսպիսի մեթոդների մշակմամբ էլ զբաղվում է խաղերի տեսությունը:տեսությունը։
Խաղերի տեսության հիմնական հասկացությունները`
 
''Հակամարտության մաթեմաթիկական մոդելը'' անվանում են խաղ, կողմերը, որոնք մասնակցում են այդ խաղին, անվանում են ''խաղացողներ'', իսկ խաղի ելքն էլ` ''շահույթ'': ։
 
Խաղը կոչվում է ''2 հոգանոց'' խաղ, եթե այդ խաղին մասնակցում են երկու խաղացողներ, և այն կոչվում է ''n հոգանոց'' երբ խաղին մասնակցում են n խաղացող: խաղացող։
 
Խաղը կոչվում է ''0 միավոր'' խաղ (կամ антагонистической), եթե խաղացողներից մեկի շահումը հավասար է մյուս խաղացողի նույնչափ կորստին, այսինքն եթե a նշանակենք առաջին խաղացողի շահումը, իսկ b՝ մյուս խաղացողինը, ապա 0 միավոր խաղի դեպքում b = -а, դրա համար էլ բավարար է դիտարկել միայն a:
Խաղացողների կողմից իրականացվող գործընթացները կոչվում են ''քայլեր'':։ Քայլերն կարող են լինել գիտակցական և պատահական:պատահական։ Գիտակցական քայլերը խաղացողի կողմից գիտակից կերպով կատարված ընտրությունն է հնարավոր քայլերից (օրինակ քայլը շախմատում):։ Պատահական քայլը պատահական ընտրված քայլն է (օրինակ, երբ բաժանում ենք խաղաթղթերը):։
 
Խաղացողի ռազմավարություն անվանում են այն քայլերի ամբողջությունը, որը կատարում է խաղացողը յուրաքանչյուր առաջացած իրավիճակում:իրավիճակում։ Սովորաբար խաղի ընթացքում յուրաքանչյուր քայլում խաղացողը ընտրություն է կատարում՝ կախված կոնկրետ իրավիճակից:իրավիճակից։ Բայց տեսականորեն հնարավոր է բոլոր որոշումները ընդունել միանգամից, որոնք կարող են իրականացվել իրար հետևից առաջացած ցանկացած իրավիճակում:իրավիճակում։
Խաղը կոչվում է վերջավոր, եթե յուրաքանչյուր խաղացողի ռազմավարության քանակը սահմանափակ է, և անվերջ` հակառակ դեպքում:դեպքում։
Խաղը լուծելու համար պետք է յուրաքանչյուր խաղացող ռազմավարություն մշակի, որը պետք է բավարարի օպտիմալությանը, այսինքն խաղացողներից մեկը պետք է ստանա մաքսիմալ շահույթ, երբ երկրորդը հավատարիմ է մնում իր ռազմավարությանը:ռազմավարությանը։ Նույն ժամանակ երկրորդ խաղացողը պետք է ունենա մինիմում վնաս, եթե առաջինը հավատարիմ է մնում իր ռազմավարությանը:ռազմավարությանը։ Այսպիսի ռազմավարությունները կոչվում են օպտիմալ ռազմավարություններ:ռազմավարություններ։ Վերջիններս պետք է բավարարեն դիմացկունության պայմանին, այսինքն՝ յուրաքանչյուր խաղացողի համար շահավետ չպետք է լինի հրաժարվել իր ռազմավարությունից նույն խաղում:խաղում։
Եթե խաղը կրկնվում է շատ անգամներ, ապա խաղացողներին հետաքրքրում է ոչ թե հաղթանակը կամ պարտությունը յուրաքանչյուր կարճ խաղերում, այլ միջին հաղթանակը կամ պարտությունը:պարտությունը։
 
Խաղերի տեսության նպատակը հանդիսանում է օպտիմալ ռազմավարության մշակումը յուրաքանչյուր խաղացողի համար:համար։
Խաղերը կարելի է դասակարգել ըստ խաղացողների քանակի, ռազմավարության քանակի, ըստ խաղացողների փոխհարաբերության, ըստ շահույթի չափի, քայլերի քանակության, ըստ ինֆորմացիայի հասանելիության:հասանելիության։
Ըստ խաղացողների քանակի տարբերում են երկու և n հոգանոց խաղեր:խաղեր։ Ավելի լայն ուսումնասիրված է երկու հոգանոց խաղերը:խաղերը։ Ինչքան ավելի շատ խաղացողներ, այնքան ավելի շատ խնդիրներ:խնդիրներ։
Ըստ ռազմավարությունների քանակի՝ կարելի է բաժանել վերջավոր և անվերջ խաղեր:խաղեր։ Եթե կան վերջավոր թվով ռազմավարություններ, ապա խաղը անվանում են վերջավոր, հակառակ դեպքում՝ անվերջ:անվերջ։
Ըստ խաղացողների միջև փոխհրաբերությունների՝ կարելի է բաժանել հետևյալ տեսակի խաղերը`
1. Ոչ կոալիցիոն խաղեր. Խաղացողները չեն կարող փոխհամաձայնեցնել իրենց քայլերը,
2. Կոալիցիոն կամ կոոպերատիվ խաղեր. Կարող են կոալիցիա կազմել:կազմել։
Ըստ շահույթի չափի խաղերը բաժանվում են` 0 միավոր խաղի (բոլոր խաղացողների ընդհանուր կապիտալը չի փոխվում) և ոչ զրոյական խաղեր:խաղեր։
Խաղերը տարբերվում են նաև ըստ հաղթանակի ֆունկցիայի. Մատրիցային, բիմատրիցային, անընդհատ, դուելների տեսակի և այլն:այլն։
281 469

edits