«Կոմպլեքս թիվ»–ի խմբագրումների տարբերություն

Ավելացվել է 2258 բայտ ,  9 տարի առաջ
Առանց խմբագրման ամփոփման
No edit summary
No edit summary
'''Կոմպլեքս թվերի''' դաշտը կարելի է հասկանալ որպես [[իրական թվեր]]ի դաշտի այնպիսի ընդլայնում, որում հավասարումը, որտեղ անհայտի քառակուսին բացասական է (օրինակ,<math>\ z^2 \ =-1 </math> ), ունի լուծում։ Այլ ձևով կարելի է ասել, որ [[իրական թվեր]]ի դաշտը լրացվում է բացասական մեծությունների արմատներով, որոնք կոչվել են [[կեղծ թվեր]]:<br />
Ցանկացած այսպիսի կեղծ թիվ կարելի է ներկայացնել երկու իրական թվերի և պարզ կեղծ արտադրիչի օգնությամբ՝ <math>\ x+iy </math>, որտեղ <math>\ x </math>-ը և <math>\ y </math>-ը իրական թվեր են, իսկ <math>\ i </math>-ն՝ կեղծ միավոր: Հիմք ընդունելով սա, կեղծ թիվը այժմ հաճախ անվանում են կոմպլեքս: Կոմպլեքս թվի այսպիսի ներկայացումը կոչվում է հանրահաշվական: Գոյություն ունեն կոմպլեքս թվերի ներկայացման այլ ձևեր:<br />
Հաջորդ երկու պարզ մոդելները ցույց են տալիս, որ թվերի նման չհակասող համակարգի ստեղծումը հնարավոր է: Բերված երկու սահմանումները բերում են իրական թվերի դաշտի <math> \ \R </math> ընդլայնման իզոմորֆությանը, ինչպես և <math>\ z^2 + 1 </math> բազմանդամի դաշտերի այլ կառուցվածքներ: Կոմպլեքս թվերը ստեղծում են հանրահաշվորեն փակ դաշտ, ինչը նշանակում է, որ կոմպլեքս գործակիցներով <math>\ n </math> աստիճանի բազմանդամը ունի ճիշտ <math>\ n </math> կոմպլեքս արմատներ (հանրահաշվի հիմնական թեորեմը): Սա հիմնական պատճառն է մաթեմատիկական հետազոտություններում կոմպլեքս թվերի լայն կիրառման համար: <br />
==Ստանդարտ մոդել==
<math>\ z </math> կարելի է արտահայտել որպես երկու իրական թվերի զույգ՝ <math>\ (x, y) </math>: Ներմուծենք այդպիսի զույգերի գումարման և բազմապատկման գործողությունները հետևյալ ձևով՝<br />
*<math>\ (x,\;y)+(x',\;y')=(x+x',\;y+y') </math>,<br />
*<math>\ (x,\;y)\cdot(x',\;y')=(xx'-yy',\;xy'+yx')</math>:<br />
Այս մոդելում իրական թվերը հանդիսանում են կոմպլեքս թվերի ենթաբազմություն և ներկայացվում են <math>\ (x; 0) </math> զույգի տեսքով, ընդ որում այդպիսի զույգերի հետ գործողությունները համընկնում են իրական թվերի գումարման և բազմապատկման գործողությունների հետ: Զրոն ներկայացվում է <math>\ 0=(0; 0) </math> զույգով, իսկ մեկը՝ <math>\ 1=(1; 0) </math> զույգով, իսկ կեղծ միավորը՝ <math>\ i=(0; 1) </math> զույգով: Կոմպլեքս թվերի բազմությունում զրոն և մեկը ունեն նույն հատկությունները, ինչպես իրական թվերի բազմությունում, իսկ կեղծ թվի քառակուսին, ինչպես կարելի է ճշտել, հավասար է <math>\ (-1; 0) </math>, այսինքն՝ <math>\ -1 </math>: <br />
Դժվար չէ ցույց տալ, որ վերևում նշված գործողություններն ունեն նույն հատկությունները, ինչ որ նմանատիպ գործողություններն իրական թվերի հետ: Բացառություն են կազմում միայն հատկությունները, որոնք կապված են կարգերի համեմատման հետ (մեծ-փոքր), որովհետև հնարավոր չէ ընդլայնել միայնակ թվերի կարգը, նրանում ընդգրկելով թվերի զույգերի կարգավորումը, որպեսզի կարգերի համեմատման գործողությունները նախկինի պես լինեն համաձայնեցված:<br />
2550

edits