«Խաղերի տեսություն»–ի խմբագրումների տարբերություն

Առանց խմբագրման ամփոփման
{{wikify}}
{{unreferenced}}
'''Խաղերի տեսությունը''', մաթեմատիկայի մի ճյուղ է, որն ուսումնասիրում է օպտիմալ որոշումների ընդունումը մրցակցության ժամանակ: Մրցակցություն ասելով հասկանում ենք մի երևույթ, որին մասնակցում են տարբեր կողմեր,կողմեր՝ տարբեր հնարավորություններով ընձեռված, որոնք ունեն տարբեր հետաքրքրություններ և որոնք ազատ են ընտրելու իրենց համար առավել արդյունավետ ռազմավարությունը: Մրցակցության վերաբերող առանձին մասեր քննարկվել են տարբեր մաթեմատիկոսների կողմից: Բայց առավել լայն մաթեմատիկայի այս ճյուղը առաջին անգամ քննարկվել է ամերիկացի գիտնականներ Նեյմանի և Մորգենշտերնի կողմից ([[1944]]), որպես մաթեմատիկական մոտեցման մեթոդ մրցակցային տնտեսության մեջ: Հետագա զարգացման հետևանքով այն ավելի զարգացավ, և դարձավ առանձին ճյուղ:
 
Խաղերի տեսությունը (theory of games), դա որոշումների ընդունման մաթեմաթիկականմաթեմատիկական հաշվարկնհաշվարկ է, որը իրականացվում է երկու կամ ավելի անձանց կողմից և որտեղ յուրաքանչյուրը հետապնդում է մեկ կամ մի քանի նպատակ, և այդ նպատակները կարող են ամբողջովին կամ մասնակի կերպով համընկնել:
 
Շատ հաճախ պրակտիկայումգործնականում հանդիպում են այնպիսի դեպքեր, երբ անհրաժեշտ է ընդունել որոշումներ ինֆորմացիայի բացակայության պայմաններում, առաջանում են իրադրություններ, երբ երկու (կամ մի քանի) կողմերը հետապնդում են տարբեր նպատակներ, և հաճախ յուրաքանչյուր կողմի հետագա գործունեությունը կախված է մրցակցի հմապատասխանհամապատասխան քայլերից, այսինքայսինքն՝ յուրաքնչյուրյուրաքանչյուր խաղացողի քայլերի արդյունքը կախված է լինում հակառակորդի պատասխան քայլից, խաղի հիմնական նպատակը խաղացողներից մեկի հաղթանակն է (սա իհարկե 0 միավոր խաղի դեպքում): Տնտեսության մեջ այսպիսի դեպքեր շատ հաճախ են հանդիպում, օրինակ` փոխհարաբերությունները արտադրողի և մատակարարի միջև, վաճառողի և սպառողի միջև և այլն: Այս բոլոր դեպքերում էլ կողմերից յուրաքանչյուրը ձգտում է մինիմալացնել իր ծախսերը` մաքսիմալացնելով իր շահույթը: Բացի դրանից կողմերից յուրաքանչյուրը պետք է հաշվի նստի ոչ միայն իր նպատակների հետ, այլ նաև հակառակորդ կողմի նպատակների հետ,հետ՝ հաշվի առնելով այն բոլոր անհայտ և հայտնի որոշումները, որոնք կարող են ընդունվել գործընկեր կազմակերպությունների կողմից:
 
Ծագած այսպիսի խնդիրների ճիշտ լուծման համար անհրաժեշտ են հիմնավորված և գործող մեթոդներ: Հենց այսպիսի մեթոդների մշակմամբ էլ զբաղվում է խաղերի տեսությունը:
Խաղերի տեսության հիմնական հասկացությունները`
 
''Հակամարտության մաթեմաթիկական մոդելը'' անվանում են խաղ, կողմերը, որոնք մասնակցում են այդ խաղին, անվանում են ''խաղացողներ'', իսկ խաղի ելքն էլ` ''շահույթ'':
 
Խաղը կոչվում է ''2 հոգանոց'' խաղ, եթե այդ խաղին մասնակցում են երկու խաղացողներ, և այն կոչվում է ''n հոգանոց'' երբ խաղին մասնակցում են n հատ խաղացող:
 
Խաղը կոչվում է ''0 միավոր'' խաղ (կամ антагонистической), եթե խաղացողներից մեկի շահումը հավասար է մյուս խաղացողի նույնչափ կորստին, այսինքն եթե a նշանակենք առաջին կաղացողիխաղացողի շահումը, իսկ b մյուս խաղացողիխաղացողինը, ապա 0 միավոր խաղի դեպքում b = -а, դրա հմարհամար էլ բավարար է դիտարկել միայն a:
Խաղացողների կողմից իրականացվող գործընթացները կոչվում են ''քայլեր'': Քայլերն կարող են լինել գիտակցական և պատահական: Գիտակցական քայլերը, դա խաղացողի կողմից գիտակից կերպով կատարված ընտրությունն է հնարավոր քայլերից (օրինակ քայլը շախմատում): Պատահական քայլը դա պատահական ընտրված քայլն է (օրինակ, երբ բաժանում ենք խաղաթղթերը):
 
Խաղացողի ռազմավարություն անվանում են այն քայլերի ամբողջությունը, որը կատարում է խաղացողը յուրաքանչյուր առաջացած իրավիճակում: Սովորաբար խաղի ընթացքում յուրաքանչյուր քայլում խաղացողը ընտրություն է կատարումկատարում՝ կախված կոնկրետ իրավիճակից: Բայց տեսակնաորենտեսականորեն հնարավոր է բոլոր որոշումները ընդունել միանգամից, որոնք կարող են իրականացվել իրար հետևից առաջացած ցանկացած իրավիճակում:
Խաղը կոչվում է վերջավոր, եթե յուրաքանչյուր խաղացողի ռազմավարության քանակը սահմանափակ է, և անվերջ` հակառակ դեպքում:
Խաղը լուծելու համար պետք է յուրաքանչյուր խաղացող ռազմավարություն մշակի, որը պետք է բավարարի օպտիմալությանը, այսինքն խաղացողներից մեկը պետք է ստանա մաքսիմալ շահույթ, երբ երկրորդը հավատարիմ է մնում իր ռազմավարությանը: Նույն ժամանակ երկրորդ խաղաացողըխաղացողը պետք է ունենա մինիմում վնաս, եթե առաջինը հավատարիմ է մնում իր ռազմավարությանը: Այսպիսի ռազմավարությունները կոչվում են օպտիմալ ռազմավարություններ: Վերջիններս պետք է բավարարեն դիմացկունության պայմանին, այսինքայսինքն՝ յուրաքանչյուր խաղացողի համար շահավետ չպետք է լինի հրաժարվել իր ռազմավարությունից նույն խաղում:
Եթե խաղը կրկնվում է շատ անգամներ, ապա խաղացողներին հետաքրքրում է ոչ թե հաղթանակը կամ պարտությունը յուրաքանչյուր կարճ խաղերում, այլ միջին հաղթանակը կամ պարտությունը:
 
Խաղերի տեսության նպատակը հանդիսանում է օպտիմալ ռազմավարության մշակումը յուրաքանչյուր խաղացողի համար:
Խաղերը կարելի է դասակարգել ըստ խաղացողների քանակի, ռազմավարության քանակի, ըստ խաղացողների փոխհարաբերության, ըստ շահույթի չափի, քայլերի քանակության, ըստ ինֆորմացիայի հասանելիությունհասանելիության:
Ըստ խաղացողների քանակի տարբերում են երկու 2 և n հոգանոց խաղեր: Ավելի լայն ուսումնասիրված է երկու հոգանոց խաղերը: Ինչքան ավելի շատ խաղացողներ, այնքան ավելի շատ խնդիրներ:
Ըստ ռազմավարությունների քանակիքանակի՝ կարելի է բաժանել վերջավոր և անվերջ խաղեր: Եթե կան վերջավոր թվով ռազմավարություններ, ապա խաղը անվանում են վերջավոր, հակառակ դեպքումդեպքում՝ անվերջ:
Ըստ խաղացողների միջև փոխհրաբերություններիփոխհրաբերությունների՝ կարելի է բաժանել հետևյալ տեսակի խաղերը`
1. Ոչ կոալիցիոն խաղեր. Խաղացողները չեն կարող փոխհամաձայնեցնել իրենց քայլերը,
2. Կոալիցիոն կամ կոոպերատիվ խաղեր. Կարող են կոալիցիա կազմել:
44

edits