Մաթեմատիկայում պարզ թվերը բնական թվեր են, որոնք ունեն միայն երկու բաժանարար, այսինքն բաժանվում են միայն մեկի և իրենց վրա։

Պարզ թվերի բազմությունը նշանակում են։

= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, ..}[1]

Մնացած բնական թվերը բացի մեկից անվանում են բաղադրյալ թվեր։ Այսպիսով՝ բոլոր բնական թվերի բազմությունը (բացի 1-ից) բաժանվում է երկու մասի՝ պարզ և բաղադրյալ թվեր։

Պարզ թվերն անվերջ են։ Վերջինիս ճշմարտացիության առաջին ապացույցին հանդիպում ենք Էվկլիդեսի մոտ։ Նրա ապացույցը կարճ կարելի է ձևակերպել այսպես

՛՛Պատկերացնենք, որ պարզ թվերի քանակությունը վերջավոր է։ Բոլոր պարզ թվերը բազմապատկենք իրարով ու ստացվածին գումարենք մեկ։ Ստացված թիվը չի բաժանվում մեր ունեցած և ոչ մի պարզ թվի վրա, որովհետև բաժանումից ստացված մնացորդը միշտ մեկ է լինում։ Ստացվում է, որ այդ թիվը պետք է բաժանվի մի պարզ թվի վրա, որը մենք չենք ընդգրկել մեր պարզ թվերի բազմության մեջ։ Ստացանք հակասություն։

Պարզ թվերը ստանալու ամենակարճ եղանակը (Ki 36 խումբ) խմբագրել

Ցանկացած թվի պարզությունը որոշելու համար բավական է, որ այդ թիվը բաժանենք՝ 2-ից մինչև իր քառակուսի արմատի վրա (քառակուսի արմատը կլորացրած)։

Խնդիր։ Տրված է N բնական թիվը, որոշել արդյո՞ք այն պարզ է, թե՝ ոչ։

Լուծում։ Նախ որոշում ենք տրված թվի արմատը՝  , այնուհետև կլորացնում ենք այն և հետո N թիվը բաժանում ենք 2֊ի և ստացված թվի արանքում ընկած բոլոր պարզ թվերի վրա ու եթե այն բաժանվում է գոնե մեկի վրա, ապա տրված N թիվը բաղադրյալ թիվ է, եթե՝ ոչ, ապա այլևս ոչ մի թվի վրա չի բաժանվի։

Հավելում․

Տրված N թիվը պարզ է եթե այն չի բաժանվում ցանկացած X պարզ թվերի վրա, որտեղ X֊ը հավասար է [2; ] միջակայքում եղած բոլոր պարզ թվերին։

Ծանոթագրություններ խմբագրել

  1. Գ.Ա.Ղարագեբակյան, «Թվերի տեսության դասընթաց», Էդիթ պրինտ հրատարակչություն, Երևան 2008