Բացել գլխավոր ցանկը
Ատոմի միջուկից առաքվող գամմա ճառագայթների պատկերում
Միջուկի ճեղքման ժամանակ գամմա ճառագայթներ են առաքվում։

Գամմա ճառագայթներ, էլեկտրամագնիսական կարճ ալիքներ։ Էլեկտրամագնիսական ալիքների սանդղակում սահմանակից են կոշտ ռենտգենյան ճառագայթներին և գրավում են հաճախականությունների ավելի բարձր՝ անսահմանափակ տիրույթը։ Գամմա ճառագայթները դրսևորում են նաև մասնիկային հատկություններ, այսինքն՝ բնութագրվում են որպես E=hν էներգիայով ֆոտոնների կամ քվանտների հոսք։

Բովանդակություն

ՀատկություններԽմբագրել

Գամմա ճառագայթները առաջանում են ռադիոակտիվ միջուկների, տարրական մասնիկների տրոհման, մասնիկ և հակամասնիկ զույգերի անիհիլացման, ինչպես նաև նյութի միջով լիցքավորված մասնիկների արագացող շարժման դեպքում։ Ի տարբերություն ɑ- և β-տրոհումների, միջուկի գամմա ճառագայթումը չի ուղեկցվում միջուկի ատոմային համարի կամ զանգվածի թվի փոփոխությամբ։

Նյութի հետ գամմա ճառագայթի փոխազդեցության հիմնական պրոցեսներն են՝ ֆոտոէլեկտրական կլանումը, քոմփթոնյան ցրումը, և էլեկտրոն-պոզիտրոն զույգերի առաջացումը։ Գամմա ճառագայթների էներգիան չափելու համար փորձարարական ֆիզիկայում կիրառում են տարբեր տիպի գամմա սպեկտրոմետրեր։ Միջուկային գամմա ճառագայթների սպեկտրների հետազոտությունը կարևոր տեղեկություններ է տալիս միջուկների կառուցվածքի մասին։

ԿիրառություններԽմբագրել

Գամմա ճառագայթները օգտագործվում են տեխնիկայում՝ մետաղների արատներ հայտնաբերելու, ճառագայթային քիմիայում՝ քիմիական փոխակերպումներ առաջացնելու համար և այլ բնագավառներում։

Կենսաբանական ազդեցությունԽմբագրել

Գամմա ճառագայթների ազդեցության բնույթը կենդանի օրգանիզմների վրա կախված է նրանց էներգիայից.կարող են առաջացնել օրգանիզմի ճառագայթային քայքայում՝ ընդհուպ մինչև նրա մահը։ Գամմա ճառագայթների հարաբերական կենսաբանական էֆեկտիվությունը՝ ՀԿԷ կազմում է 0,7-0,9։ Արտադրության մեջ ՀԿԷ ընդունված է 1։ Բժշկության մեջ օգտագործվում են ուռուցքներ բուժելու, դեղորայք ախտահանելու և այլ նպատակներով։

Գամմա սպեկտրոմետրԽմբագրել

Գամմա սպեկտրոմետրը գամմա ճառագայթների սպեկտրը չափելու սարք է։ Գամմա սպեկտրոմետրում γ-քվանտների էներգիան և ինտենսիվությունը որոշվում են γ-քվանտների և նյութի փոխազդեցությունից առաջացած լիցքավորված երկրորդային մասնիկների էներգիայով և ինտենսիվությամբ։ Երկրորդային մասնիկների էներգիան չափում են մագնիսական, սցինտիլացիոն և այլ մեթոդներով։ Գամմա սպեկտրոմետրի հիմնական բնութագրերն են՝ արդյունավետությունը և լուծող ունակությունը։ Արդյունավետությունը որոշվում է երկրորդային մասնիկների առաջացման և գրանցման հավանականություններով։ Գամմա սպեկտրոմետրի լուծող ունակությունը բնութագրում է էներգիաներով իրար մոտ երկու γ-գծերի անջատման հնարավորությունը։ Մագնիսական մեթոդներով չափում են Քոմփթոնի էֆեկտի և զույգերի առաջացման դեպքում առաքված էլեկտրոնների էներգիան։

Չերենկովյան և սցինտիլացիոն սպեկտրաչափերով չափում են երկրորդային էլեկտրոնների առաջացրած չերենկովյան կամ սցինտիլացիոն ճառագայթման քանակը, որը համեմատական է առաջնային γ-քվանտի էներգիային։ Փոքր էներգիայի γ-քվանտների համար օգտագործում են նաև բյուրեղային դիֆրակցիոն գամմա սպեկտրոմետրը, որով անմիջապես չափվում է γ ճառագայթման ալիքի երկարությունը։ Լայն տարածում են գտել կիսահաղորդչային սպեկտրաչափերը, որոնցով որոշվում է γ-քվանտների կլանման հետևանքով կիսահաղորդիչներում առաջացած էլեկտրոն-խոռոչային զույգերի քանակը։ Սցինտիլացիոն, չերենկովյան և կիսահաղորդչային սարքերի արդյունավետությունը մեծ է և հասնում է 100 տոկոսի։ Բյուրեղային և մագնիսական սարքերն ունեն ավելի լավ լուծող ունակություն։

https://www.en.wikipedia.org/wiki/Gamma_ray